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A. Model Appendix

A.1. Loglinear habit dynamics around steady state

We derive a loglinear expansion showing that we can view habit approximately as a function of
current and lagged consumption moments. This Section derives the loglinear dynamics of the habit stock
using a first order approximation around the steady state St = S̄. We write log habit ht as a distributed
lag of current and lagged consumption moments and the output gap, which also equals stochastically
de-trended consumption according to model equation (10).

We model how habit adjusts to consumption implicitly by modeling the evolution of the log surplus
consumption ratio. In order to solve for log habit we need an approximate relation between log habit,
log consumption, and the log surplus consumption ratio. Defining ŝt = st − s̄, we develop a first-order
Taylor expansion of ŝt in terms of ct − ht. We take the first derivative of ŝt with respect to ct − ht:

dŝt
d(ct − ht)

=
d

d(ct − ht)

(
log

(
1− exp(−(ct − ht))

S̄

))
, (A1)

=
S̄

1− exp(−(ct − ht))
exp(−(ct − ht))

S̄
, (A2)

= −
(

1− 1

St

)
, (A3)

so at the steady state this first derivative equals:

dŝt
d(ct − ht)

∣∣∣∣
St=S̄

= −
(

1− 1

S̄

)
. (A4)

The first order Taylor expansion for ŝt in terms of ct − ht around the steady-state therefore equals (up
to constant):

ŝt ≈
(

1− 1

S̄

)
(ht − ct) , (A5)

or

ht ≈ ct +
ŝt

1− 1
S̄

. (A6)

The relation (A6) is approximate rather than exact because we ignore second- and higher-order terms
in (ct − ht). Further approximating λ(st) ≈ λ(s̄) = 1

S̄
− 1, the approximate dynamics for ŝt near the

steady state are given by:

ŝt+1 ≈ θ0ŝt + θ1xt + θ2xt−1 +

(
1

S̄
− 1

)
εc,t+1. (A7)

Combining (A6) with (A7) gives the approximate dynamics for log habit:

ht+1 ≈ ct+1 +
1

1− 1
S̄

ŝt+1, (A8)

≈ ct+1 +
1

1− 1
S̄

(
θ0ŝt + θ1xt + θ2xt−1 + εs,t +

(
1

S̄
− 1

)
εc,t+1

)
, (A9)

≈ ct+1 − εc,t+1 + θ0 (ht − ct)−
θ1

1
S̄
− 1

xt −
θ2

1
S̄
− 1

xt−1, (A10)

≈ θ0ht + (1− θ0)ct + Et∆ct+1 −
θ1xt + θ2xt−1

1
S̄
− 1

, (A11)

where we use ∆ct+1 = ct+1 − ct to denote the change in log consumption from time t to time t+ 1. We
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now iterate (A11) to obtain:

ht+1 ≈
∞∑
j=0

θj0

(
(1− θ0)ct−j + Et−j∆ct−j+1 −

θ1xt−j + θ2xt−j−1
1
S̄
− 1

)
, (A12)

≈ (1− θ0)

∞∑
j=0

θj0ct−j +

∞∑
j=0

θj0Et−j∆ct−j+1 −
θ1

1
S̄
− 1

xt (A13)

−θ0θ1 + θ2
1
S̄
− 1

∞∑
j=0

θj0xt−j−1. (A14)

The expansion (A14) shows that approximate log habit depends on lagged moments of consumption and
the output gap.

We substitute in for the output gap xt from equation (10) in the main paper:

ht+1 ≈ (1− θ0)

∞∑
j=0

θj0ct−j +

∞∑
j=0

θj0Et−j∆ct−j+1 (A15)

− θ1
1
S̄
− 1

(
ct − (1− φ)

∞∑
i=0

φict−1−i

)
(A16)

−θ0θ1 + θ2
1
S̄
− 1

∞∑
j=0

θj0

(
ct−j−1 − (1− φ)

∞∑
i=0

φict−j−2−i

)
. (A17)

The Campbell and Cochrane (1999) case corresponds to θ1 = θ2 = 0 and constant expected
consumption growth. In that case, expression (A17) shows that log habit is approximately an
exponentially-weighted moving average of lagged log consumption with exponential parameter θ0.

In our calibration θ1 < 0 and θ2 > 0 and we impose the constraint that the lead and lag coefficients
in the New Keynesian Euler equation sum up to one, i.e. equation (16) in the main paper. With this
additional constraint, the loading of log habit onto the first two lags of consumption at the steady-state
become

∂ht+1

∂ct
= (1− θ0)− θ1

1
S̄
− 1

, (A18)

∂ht+1

∂ct−1
= (1− θ0)θ0 +

θ1(1− φ)− θ0θ1 − θ2
1
S̄
− 1

, (A19)

= (1− θ0)θ0 +
1− φ
1
S̄
− 1

+ ((1− φ) + (1− θ0))× θ1
1
S̄
− 1

. (A20)

Equation (A18) shows that a negative value for θ1 (as in our calibration) drives up habit’s loading on
the most recent consumption lag. Because φ and θ0 are both close to but smaller than one, equation
(A20) shows that ∂ht+1

∂ct−1
also increases when θ1 is negative. However, ∂ht+1

∂ct−1
changes much less with θ1

than ∂ht+1

∂ct
because in (A20) θ1 is pre-multiplied by a small factor ((1−φ) + (1− θ0)). In our calibration

((1 − φ) + (1 − θ0)) = 0.10, so a negative value for θ1 increases habit’s dependence on the most recent
consumption lag, but roughly leaves its dependence on the second consumption lag unchanged.

B. New Keynesian Microfoundations

For completeness, in this Section we present a set of microfoundations for the log-linearized
macroeconomic New Keynesian model with finance habit formation preferences. We make some minor
modifications to the standard setup and derivation to address the issues noted by Lettau and Uhlig (2000)
that habit may affect labor supply decisions in a production economy, and to ensure that model output
gap is level stationary whereas consumption is stationary in changes, i.e. equation (10) in the main paper.
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B.1. Firms

B.1.1. Final good

A final consumption good Yt is produced by a representative perfectly competitive firm from a
continuum of differentiated goods Yi,t:

Yt ≡
[∫ 1

0

Y
ζ−1
ζ

i,t di

] ζ
ζ−1

. (A21)

The resulting demand for the differentiated good i is downward-sloping in its product price Pi,t:

Yi,t = Yt

(
Pi,t
Pt

)−ζ
. (A22)

Here, Pt =
[∫ 1

0
P
−(ζ−1)
i,t di

]− 1
ζ−1

is the aggregate price level. The constant ζ is the elasticity of substitution

across intermediate goods.

B.1.2. Intermediate good

Intermediate goods firm i produces according to a Cobb-Douglas production function with capital
share τ :

Yi,t = NtL
1−τ
i,t . (A23)

Productivity is given by Nt. With (A21), aggregate output then satisfies

Yt = NtL
1−τ
t , (A24)

where aggregate labor is defined:

Lt ≡
[∫ 1

0

L
(ζ−1)(1−τ)

ζ

i,t di

] ζ
(ζ−1)(1−τ)

. (A25)

The aggregate resource constraint in this economy is simple. Because there is no time-varying real
investment, consumption equals output Ct = Yt.

Following Lucas (1988), we assume that human capital depends on the average skill acquired by all
agents, and that changes in log human capital are driven by past market labor, lt−1:

nt = ν + nt−1 + (1− φ)(1− τ)lt−1. (A26)

Here, 0 ≤ φ ≤ 1 and ν > 0 are constants. This assumption ensures that potential output increases with
lagged output. The process (A26) can equivalently be interpreted as a simple endogenous capital stock,
similarly to (Woodford, 2003, Chapter 5), if a fixed proportion of market labor each period is used to
produce investment goods and we scale the total amount of labor available accordingly.

Intermediate firm profit equals output minus the cost of labor, subject to the production function
(A23), demand for differentiated goods (A22), and taking wages as given.

B.1.3. Price setting

Intermediate firms face standard price-setting frictions in the manner of Calvo (1983), where fraction
1 − α of firms can change prices every period with equal probabilities across firms. When firms cannot
update, their prices are indexed to lagged inflation (Smets and Wouters (2007), Christiano, Eichenbaum,
and Evans (2005)). A firm that last reset its price at time t to P̃t, charges a nominal time t + j price

P̃t

(
Pt−1+j

Pt−1

)
. A firm that can update its product price maximizes the discounted sum of current and

future expected profits while the price is expected to remain in place, discounted at the households’
stochastic discount factor.
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B.2. Labor-leisure choice

The wages intermediate firms face arise from a standard labor-leisure choice. The habit preferences
over market consumption in Section 2.1 in the main paper arise when leisure and home home good habits
are at their equilibrium values.

Following the classic model of Greenwood, Hercowitz, and Huffman (1988), we assume that total
consumption consists of market consumption and home produced goods. Labor not used in the market
is used for home production, such as cooking at home instead of eating out. Household H’s total
consumption is the sum of market consumption, Ch,t, and home production Chomeh,t :

Chomeh,t = Nt

∫ 1

0
(1− Lh,i,t)1−χ

di

1− χ
. (A27)

Here, Lh,i,t denotes the differentiated labor that household h provides to firm i and (1−Lh,i,t) is labor used
for home production. Home production has decreasing returns to scale, as in Campbell and Ludvigson
(2001), and the parameter χ determines the elasticity of market labor supply.2 Utility equals

Uh,t =

(
(Ch,t −Ht) + (Chomeh,t −Hhome

t )
)1−γ

− 1

1− γ
(A28)

Both market and home consumption are assumed to be subject to external habits, Ht and Hhome
t . Habits

are external, meaning that they are shaped by aggregate consumption and labor rather than household
h’s own consumption and labor. The parameter γ is a curvature parameter.

The formulation of the labor-leisure choice following Greenwood, Hercowitz, and Huffmann (1988)
separates the intratemporal labor-leisure choice from the intertemporal consumption-savings decision,
which is needed to ensure that the intermediate firms’ first-order profit takes a standard form. The
assumption that productivity in the home increases with aggregate productivity, Nt, ensures that the
labor-leisure trade-off does not become irrelevant over time consistent with empirical evidence (Kehoe,
Lopez, Midrigan, Pastorino (2019), Chodorow-Reich and Karabarbounis (2016)). A complementary
approach to separate wages from consumption habit would be to introduce separate slow-moving habits
for consumption and leisure combined with labor market frictions, though matching asset pricing moments
can be challenging in such a setup (Uhlig (2007), Rudebusch (2008), Lopez (2014)). Our formulation is
more parsimonious and requires only one parameter, χ, closely related to the Frisch elasticity of labor
supply. Because of this parsimony we consider our model a useful template to study the interaction
between labor market frictions and habits in future research.

B.2.1. Home and market good habits

As in Campbell and Cochrane (1999) all habits are external. We assume that home good habit
equals aggregate home good consumption, i.e. Hhome

h,t = Chomet for all households h. When home goods

consumption is at its equilibrium value Chomeh,t = Chomet , utility over market consumption therefore takes
the form (1) in the main paper. Market consumption habit is described by equations (4) through (9) in
the main paper.

B.3. Overview: Proof of Phillips Curve

We now derive the log-linearized Phillips curve (23) from the firm’s optimal price-setting and
production problems. This derivation is tedious, but almost all the steps in our derivation are standard.
Our asset pricing habit preferences potentially enter in two places. This Section shows that the
log-linearized Phillips curve is invariant to both of these channels for the following two reasons:

1. Firms’ real marginal cost depends on the real wage, which depends on preferences. The
log-linearized Phillips curve is invariant to this channel, because we separate the intertemporal

2The differentiated labor assumption follows Woodford (2003, Chapter 3) and generates real rigidities from labor
immobility across sectors (Ball and Romer (1990)).
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consumption-savings decision and the intratemporal labor-leisure choice as in Greenwood,
Hercowitz, and Huffman (1988). We therefore obtain a standard functional form for log-linearized
real marginal cost that does not depend on habit or surplus consumption.

2. The SDF enters into firms’ first-order condition for the optimal price-setting decision. The log-
linearized Phillips curve is invariant to this channel, because up to first-order our SDF is standard
and second-order terms drop out of the log-linearized first-order condition, leading to a standard
log-linearized Phillips curve.

We log linearize labor around the steady-state with Ȳt = L̄1−τ and L̄ the labor supply consistent
with steady-state markups when prices are flexible. We use bars to denote steady-state values and hats
to denote log deviations from this steady-state. We use lower-case letters to denote logs.

B.4. Marginal cost of production and steady-state labor supply

In this Section, we follow standard log-linearization steps to show that to first order firm i’ log
deviation of marginal cost from steady-state takes the form:

m̂ci,t = a0ŷt − a1 (pi,t − pt) , (A29)

i.e. it increases in the log deviation of output from the steady state, and decreases in the log own-firm
price deviation from the log aggregate price level where both a0 and a1 are positive constants. We use
hats to denote log deviations from the steady-state, so that ŷt = xt is the log output gap.

The real wage must equate household h’s marginal disutility of labor outside the home with the
marginal utility of market consumption:

Wi,t =

∂Uh,t
∂Lh,i,t
∂Uh,t
∂Ch,t

= Nt (1− Lh,i,t)−χ . (A30)

Because all households are identical, this means that the wage for labor of type i must equal

Wi,t = Nt (1− Li,t)−χ . (A31)

Firm i’s cost of producing quantity Yi,t of good i equals:

Costi,t = Wi,tLi,t (A32)

= Wi,t

(
Yi,t
Nt

)1/(1−τ)

(A33)

Taking the derivative with respect to Yi,t and substituting in for the wage from (A31) gives the marginal
cost of supplying good i:

MCi,t =
1

1− τ
Wi,t

Nt

(
Yi,t
Nt

) τ
1−τ

, (A34)

=
1

1− τ

(
1−

(
Yi,t
Nt

)1/(1−τ)
)−χ(

Yi,t
Nt

) τ
1−τ

. (A35)

Note that here we have assumed that the producer is a wage taker following Woodford (2003, p.148). We
define the steady-state labor supply L̄ to be the amount of labor supplied if markups are equal to the
steady-state value

µ ≡ ζ

1− ζ
(A36)

, and all firms charge the same price. From (A35), the steady-state labor supply L̄ then is the unique
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solution to

µ−1 =
1

1− τ
(
1− L̄

)−χ
L̄

τ
1−τ . (A37)

At the steady-state the real wage for labor of type i equals

W̄i,t = Nt
(
1− L̄

)−χ
. (A38)

Log-linearizing the real wage around the steady-state wage gives:

ŵi,t = χ
L̄

1− L̄
l̂i,t, (A39)

= ηl̂i,t. (A40)

Here,

η ≡ χ L̄

1− L̄
(A41)

is the inverse of the steady-state Frisch elasticity of labor supply.
Intermediate firm i’s elasticity of real marginal cost with respect to own-firm output near the steady-

state then equals:

dMCi,t
dYi,t

Yi,t
MCi,t

=
τ

1− τ
+

η

1− τ
, (A42)

≡ ω. (A43)

To first order, firm i’s log marginal cost relative to steady-state then equals

m̂ci,t = log (MCi,t)− log
(
µ−1

)
,

= ωŷi,t, (A44)

= ωŷt − ωζ(pi,t − pt), (A45)

In the last step, we have used the demand function (A22). We hence obtain the functional form (A29)
with a0 = ω and a1 = ωζ.

We can compare (A45) to the log real marginal cost obtained with standard preferences (e.g.
Woodford, 2003), where the real wage is given by

Wt =
Lηi,t

C−γt
, (A46)

where η is the inverse of the Frisch elasticity of labor supply and γ is risk aversion. This expression is
log-linearized to

ŵi,t = γŷt + ηl̂i,t. (A47)

If instead, the log-linearized real wage took the form (A47), we would obtain the following log-
linearized expression for the real marginal cost:

m̂ci,t = (ω + γ) ŷt − ωζ(pi,t − pt), (A48)

i.e. a0 = ω + γ and a1 = ωζ. Comparing expressions (A45) and (A48) shows that the log-linearized real
wage in our model takes the same functional form as under standard preferences.
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B.5. Discount Factor for Phillips Curve

We now derive the first-order approximation of the stochastic discount factor. Let Mt,t+j =
Mt+1Mt+2...Mt+j denote the household SDF for discounting cash flows at time t + j back to time t.
In the steady-state, log consumption grows at rate g and st is constant at s̄. The steady-state SDF for
discounting time t+ j real cash flows at time t takes the standard form:

M̄t,t+j = βjexp(−γgj). (A49)

We denote log deviation of the SDF from this steady-state:

m̂t,t+j = log
(
Mt,t+j/M̄t,t+j

)
. (A50)

We will see that m̂t,t+j drops out of the log-linearized price-setting first-order condition.

B.6. Price Level Law of Motion

The remainder of the derivation of the log-linearized profit first-order condition is standard and
follows Walsh (2017). We log-linearize around πt = 0.

Since the probability of being able to adjust the price-level is independent and equal across firms,
each firm that has the chance to re-set its price at time t chooses the same price P̃t. The law of motion
for the price level is

P
−(ζ−1)
t = α

(
Pt−1

Pt−1

Pt−2

)−(ζ−1)

+ (1− α)P̃
−(ζ−1)
t . (A51)

Dividing (A51) by P
−(ζ−1)
t gives

1 = αexp ((ζ − 1) (πt − πt−1)) + (1− α)

(
P̃t
Pt

)−(ζ−1)

. (A52)

Using the notation p̃t = log
(
P̃t
Pt

)
, to first-order the price-level law of motion is

p̃t =
α

1− α
(πt − πt−1) . (A53)

B.7. Price-Setting First-Order Condition

The price charged at time t+ j by a firm that last got to reset its price at time t equals

P̃t (Pt−1+j/Pt−1) . (A54)

A firm that has the opportunity to re-set prices at time t chooses the price P̃t to maximize the expected
discounted sum of real profits conditional on the price still being in place:

max
P̃t

Eet

∞∑
j=0

αjMt,t+jYt+j

( P̃t
Pt

Pt−1+j/Pt−1

Pt+j/Pt

)1−ζ

− Costi,t+j
Yt+j

 , (A55)

where we use superscript e to denote price-setters’ expectations.
The first-order condition with respect to the optimal price P̃t equates the expected discounted sum

of the marginal change in revenue with the expected discounted sum of the marginal change in cost of
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producing the quantity demanded

P̃t
Pt
Eet

∞∑
j=0

αjMt,t+jYt+j(ζ − 1)

(
Pt−1+j/Pt−1

Pt+j/Pt

)1−ζ

= Eet

∞∑
j=0

αjMt,t+jYt+jζ

(
Pt−1+j/Pt−1

Pt+j/Pt

)−ζ
MCi,t+j . (A56)

B.8. Log-Linearizing the Profit First-Order Condition

We now log-linearize the first-order condition (A56) following the steps outlined in Walsh (2017),
Chapter 8.7. In the flexible-price equilibrium, all firms charge the same price so MC = µ−1 = ζ−1

ζ .

Denoting the log of steady-state output by ȳt ≡ log Ȳt we have that

ȳt+1 − ȳt = ∆nt+1, (A57)

= ν + (1− φ)(1− τ)lt, (A58)

= g + (1− φ)ŷt, (A59)

where the steady-state growth rate, g, equals

g = ν + (1− φ)(1− τ)l̄. (A60)

To save on notation, we define:

βg = βexp(−(γ − 1)g). (A61)

The log-linear expansion for the left-hand-side of (A56) conditional on Ȳt becomes:

(1 + p̃t)E
e
t

∞∑
j=0

[
(βgα)

j
Ȳt(1 + ŷt+j)(1 + (ȳt+j − ȳt − g)) (1 + m̂t,t+j) (ζ − 1)×

(1 + (1− ζ) (πt − πt+j))] .
(A62)

Dropping second-order terms and collecting terms that are independent of horizon j gives

Ȳt(ζ − 1)

1− βgα
+
Ȳtp̃t(ζ − 1)

1− βgα

+Ȳt(ζ − 1)Eet

∞∑
j=0

(βgα)
j

(ŷt+j + (ȳt+j − ȳt − g) + m̂t,t+j + (1− ζ) (πt − πt+j)) .

(A63)

Next, we approximate the right-hand-side of (A56) log-linearly. This gives

Eet

∞∑
j=0

[
(βgα)

j
Ȳt(1 + ŷt+j)(1 + (ȳt+j − ȳt − g)) (1 + m̂t,t+j) ζ×

(1− ζ (πt − πt+j))MC(1 + m̂ct+j)
]
. (A64)
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Next, we use ζMC = ζ − 1, substitute in (A45), and drop second-order terms:

Ȳt(ζ − 1)

1− βgα
+ Ȳt(ζ − 1)Eet

∞∑
j=0

(βgα)
j

(ŷt+j + (ȳt+j − ȳt − g) + m̂t,t+j)

+Ȳt(ζ − 1)Eet

∞∑
j=0

(βgα)
j

(−ζ (πt − πt+j) + m̂ct+j) , (A65)

=
Ȳt(ζ − 1)

1− βgα
+ Ȳt(ζ − 1)Eet

∞∑
j=0

(βgα)
j

(ŷt+j + (ȳt+j − ȳt − g) + m̂t,t+j)

+Ȳt(ζ − 1)Eet

∞∑
j=0

(βgα)
j

(−ζ (πt − πt+j) + a0ŷt+j)

−a1

 Ȳt(ζ − 1)p̃t
1− βgα

+ Ȳt(ζ − 1)Eet

∞∑
j=0

(βgα)
j

(πt − πt+j)

 . (A66)

Equating (A63) and (A66), cancelling common terms, and dividing by Ȳt(ζ − 1) gives

(1 + a1)

 p̃t
1− βgα

+
πt

1− βgα
− Eet

∞∑
j=0

(βgα)
j
πt+j


= Et

∞∑
j=0

(βgα)
j

(a0ŷt+j) . (A67)

Note in particular that m̂t,t+j drops out of (A67). Because this is the main place where we differ from
the standard New Keynesian model, this makes clear that our asset pricing preferences drop out of the
log-linearized optimal price-setting decision.

B.9. Substituting out p̃t

Next, we follow a number of standard steps (e.g. Walsh (2017)) to solve for πt. From equation (A67)
we have:

p̃t + πt = (1− βgα)Eet

∞∑
j=0

(βgα)
j

(
a0ŷt+j
1 + a1

+ πt+j

)
, (A68)

=
1− βgα
1 + a1

(a0ŷt) + (1− βgα)πt

+βgα(1− βgα)Eet

∞∑
j=0

(βgα)
j

(
a0ŷt+1+j

1 + a1
+ πt+1+j

)
,

=
1− βgα
1 + a1

(a0ŷt) + (1− βgα)πt + βgαE
e
t (p̃t+1 + πt+1) (A69)

This equation relates the optimal relative price to the current-period marginal cost, current-period optimal
markup, and the next-period expected optimal relative price. Subtracting πt from both sides gives

p̃t =
1− βgα
1 + a1

(a0ŷt)− βgαπt + βgαE
e
t πt+1 + βgαE

e
t p̃t+1. (A70)

Substituting in the log-linearized law of motion for inflation (A53) and multiplying by 1−α
α gives

(πt − πt−1) =
1− α
α

1− βgα
1 + a1

(a0ŷt)− βgπt + βgE
e
t πt+1 (A71)
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Solving for πt gives the New Keynesian Phillips Curve (ignoring constants)

πt =
βg

1 + βg
πet +

1

1 + βg
πt−1 + κŷt, (A72)

where πet denotes price-setters’s inflation expectations and the Phillips curve slope coefficient on ŷt = xt
equals

κ =
1

1 + βg

1− α
α

(1− βgα)
a0

1 + a1
. (A73)

Finally, we use that (up to a constant)

xt = ŷt, (A74)

a0 = ω, (A75)

a1 = ωζ. (A76)

to obtain the log-linearized New Keynesian Phillips curve (23) in the main paper. One way to obtain a
backward-looking coefficient in the Phillips curve that is not as closely tied to βt and that can therefore
be matched more closely to the empirical persistence of inflation is if price-setters’ inflation expectations
are partially indexed to lagged inflation (πet = ρeπt−1 +(1−ρe)Etπt+1, for some constant ρe ∈ [0, 1] where
Etπt is the rational forecast of next-period inflation). In that case the backward-looking component in the

Phillips curve equals ρπ = 1
1+βg

+
βg

1+βg
rhoe. Other ways to obtain a larger backward-looking component

in the Phillips curve would be through more complicated price-setting mechanisms (e.g. Fuhrer and
Moore (1995)).

Note that the limiting case of perfectly sticky prices (α = 0) corresponds to κ = 0, so inflation
equals zero irrespective of the cross-goods substitutability ζ. The parameters τ and η also drop out of
equilibrium dynamics in that case, simplifying the macroeconomic dynamics.

C. Model Solution

C.1. Consumption from output gap

Recall that the steady-state is given by Ȳt = NtL̄
1−τ , where L̄ is the labor supply consistent with

flexible prices and steady-state markups.
Using the resource constraint yt = ct and the process for human capital (A26).

nt = ν + nt−1 + (1− φ)(1− τ)lt−1, (A77)

= ν + nt−1 + (1− φ)yt−1, (A78)

=
ν

1− φ
+ (1− φ)

∞∑
j=0

φjyt−1−j . (A79)

The deviation of output from the flexible-price equilibrium then equals (up to a constant):

xt = yt − nt, (A80)

= yt − (1− φ)

∞∑
j=0

φj (yt−1−j) , (A81)

= ct − (1− φ)

∞∑
j=0

φjct−1−j , (A82)

i.e. equation (10) in the main paper. Inverting equation (10) gives the equilibrium consumption dynamics
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from the output gap:

∆ct+1 = xt+1 − φxt. (A83)

We can therefore solve for consumption from the output gap and vice versa.

C.2. Details: Euler equation derivation

With the updating equation for log consumption growth (A83), the asset pricing Euler equation for
the one-period real risk-free rate is given by:

rt = γEt∆ct+1 + γEt∆ŝt+1 −
γ2

2
(1 + λ(st))

2
σ2
c , (A84)

= γEt∆ct+1 + γ(θ0 − 1)ŝt + γθ1xt + γθ2xt−1 −
γ2

2
(1 + λ(st))

2
σ2
c , (A85)

= γEtxt+1 − γφxt + γ(θ0 − 1)ŝt + γθ1xt + γθ2xt−1 −
γ2

2
(1 + λ(st))

2
σ2
c

The sensitivity function has just the right form so that surplus consumption ŝt drops out and (up to a
constant):

rt = γEtxt+1 − γφxt + γθ1xt + γθ2xt−1 (A86)

Rearranging and continuing to ignore constants gives:

xt =
1

φ− θ1
Etxt+1 +

θ2

φ− θ1
xt−1 −

1

γ(φ− θ1)
rt. (A87)

Note that we have not made any approximations in the derivation of (14).

C.3. Solving for macroeconomic dynamics

In our solution for macroeconomic dynamics we have several no-longer needed shocks for legacy
reasons. The additional shocks - demand, supply, and the shock to the random walk component of
inflation – are later set to zero. Our solution method also includes an inflation state variable and a
random walk component in inflation, though both are later set to zero.

The full macroeconomic dynamics are given by

xt = fxEtxt+1 + ρxxt−1 − ψ (rt − γεs,t) , (A88)

πt = fπEtπt+1 + ρππt−1 + κxt + vπ,t, (A89)

i∗ = γxxt + γππt + (1− γπ)v∗t , (A90)

it = ρiit−1 + (1− ρi)i∗t + vMP,t, (A91)

v∗t = v∗t−1 + vLT,t (A92)

The demand shock vx,t = γψεs,t, the supply shock vπ,t, and the random walk shock vLT,t will later be
set to zero, so v∗t and πt will also be zero.

We want to find a solution of the form

Yt = BYt−1 + Σvt, (A93)

where the matrix B is [3× 3], the matrix Σ is [3× 4], and we work with the expanded state vector

Yt = [xt, π̂t, ît]
′ (A94)

, π̂t = πt − v∗t , (A95)

ît = it − v∗t . (A96)
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Writing the macroeconomic dynamics in terms of the state vector Yt:

Y1,t = fxEtY1,t+1 + ρxY1,t−1 − ψ (Y3,t − EtY2,t+1) + vx,t, (A97)

Y2,t = fπEtY2,t+1 + ρπY2,t−1 + κY1,t + vπ,t − ρπvLT,t, (A98)

Y3,t = ρiY3,t−1 + (1− ρi) (γxY1,t + γπY2,t) + vST,t − ρivLT,t, (A99)

v∗t = v∗t−1 + vLT,t. (A100)

The same thing in matrix form:

0 = FEtYt+1 +GYt +HYt−1 +Mvt,

where the matrices F , G and H are given by

F =

 fx ψ 0
0 fπ 0
0 0 0

 ,
G =

 −1 0 −ψ
κ −1 0

(1− ρi)γx (1− ρi)γπ −1

 ,
H =

 ρx 0 0
0 ρπ 0
0 0 ρi

 .
The matrix M is [3× 4] and equals:

M =

 1 0 0 0
0 1 0 −ρπ
0 0 1 −ρi

 (A101)

Following Uhlig (1999), we solve for the generalized eigenvectors and eigenvalues of the matrix Ξ
with respect to the matrix ∆, where

Ξ =

[
−G −H
I3 03

]
, (A102)

∆ =

[
F 03

03 I3

]
(A103)

To obtain a solution, we then pick three generalized eigenvalues λ1, λ2, λ3 with generalized
eigenvectors [λz′1, z

′
1]
′
, [λ2z

′
2, z2]

′
, and [λ3z

′
3, z
′
3]
′
. We denote the diagonal matrix of these eigenvalues

by Λ = diag (λ1, λ2, λ3), and the matrix of the lower [3×1] portion of the eigenvectors by Ω = [z1, z2, z3].
The corresponding solutions for B and Σ are then given by:

B = ΩΛΩ−1, (A104)

Σ = − [FB +G]
−1
M. (A105)

In our empirical application, there exist exactly three generalized eigenvalues with absolute value less
than one, and we pick the non-explosive solution corresponding to these three eigenvalues.

C.4. Rotated state vector

Our state space for solving for asset prices is five-dimensional: It consists of Z̃t, which a scaled
version of Yt, the surplus consumption ratio relative to steady-state ŝt, and the lagged output gap xt−1.
The lagged output gap xt−1 is not actually needed as a state variable and we have verified that our
numerical solutions for asset prices do not vary with xt−1. Our code includes xt−1 as a state variable for
legacy reasons.
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We next describe the definition of Z̃t. To simplify the numerical implementation of the asset pricing
recursions, we require that shocks to the scaled state vector Z̃t are independent standard normal and
that the first dimension of the scaled state vector is perfectly correlated with output gap innovations.
This rotation facilitates the numerical analysis, because it is easier to integrate over independent random
variables. Aligning the first dimension of the scaled state vector with output gap innovations (and hence
surplus consumption innovations) helps, because it allows us to use a finer grid to integrate numerically
over this crucial dimension over which asset prices are most non-linear.

If the scaled state vector equals Z̃t = AYt for some invertible matrix A, the dynamics of Z̃t are given
by:

Z̃t = AYt, (A106)

Z̃t+1 = ABA−1︸ ︷︷ ︸
B̃

Z̃t +AΣvt+1︸ ︷︷ ︸
εt+1

. (A107)

We hence want a matrix, A, such that

V ar (εt+1) = AΣΣvΣ
′A′, (A108)

=

 1 0 0
0 1 0
0 0 1

 . (A109)

Finding such a matrix A should in general be possible, because the matrix M and therefore ΣΣvΣ
′

generally have rank three. We require that the first dimension of εt+1 is perfectly correlated with the
consumption shock. We can therefore find the three rows of A using the following steps:

1. Set A1 = e1√
e1ΣΣvΣ′e′1

.

2. We use the MATLAB function null to compute the null space of A1ΣΣvΣ
′. Let n2 denote the first

vector in null (A1ΣΣvΣ
′). We then define the second row of A as the normalized version of n2:

A2 =
n2√

n2ΣΣvΣ′n′2
. (A110)

3. Let n3 denote the first vector in null (A1ΣΣvΣ
′, A2ΣΣvΣ

′). We then define the third row of A as
the normalized version of n3:

A3 =
n3√

n3ΣΣvΣ′n′3
. (A111)

It is then straightforward to verify that equation (A109) holds for

A =

 A1

A2

A3

 . (A112)

C.5. Asset pricing recursions

Before deriving the recursions for the numerical asset pricing computations, we derive a convenient
form for the dynamics of the log surplus consumption ratio. We use ei to denote a row vector with 1 in
position i and zeros elsewhere. The matrix

ΣM = e1Σ (A113)

denotes the loading of consumption innovations onto the vector of shocks vt, where e1 is a basis vector
with a one in the first position and zeros everywhere else. The volatility of consumption surprises equals:

σ2
c = ΣMΣvΣ

′
M . (A114)
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To simplify notation, we define ŝt as the log deviation of surplus consumption from its steady state. The
dynamics of ŝt, including the additional surplus consumption shock εs,t that will later be set to zero, are:

ŝt = st − s̄, (A115)

ŝt = θ0ŝt−1 + θ1xt−1 + θ2xt−2 + εs,t−1 + λ(ŝt−1)εc,t, (A116)

where with an abuse of notation we write:

λ(ŝt) = λ0

√
1− 2ŝt − 1, ŝt ≤ smax − s̄, (A117)

λ(ŝt) = 0, ŝt ≥ smax − s̄. (A118)

The steady-state surplus consumption sensitivity equals:

λ0 =
1

S̄
. (A119)

In our calculations of asset prices, we repeatedly substitute out expected log SDF growth, which
equals:

Et [mt+1] = log β − γEt∆ŝt+1 − γEt∆ct+1, (A120)

= −rt −
γ

2
(1− θ0)(1− 2ŝt). (A121)

We often combine this with rt = r̄ + (e3 − e2B)Zt and r̂t = (e3 − e2B)Zt.
Including the constant, consumption growth is given by:

∆ct+1 = g + xt+1 − φxt. (A122)

The steady state real short-term interest rate at xt = 0 and st = s̄ is the same as in Campbell and
Cochrane (1999):

r̄ = γg − 1

2
γ2σ2

c/S̄
2 − log(β). (A123)

The updating rule for the log surplus consumption ratio can then be written in terms of the state
variables as:

ŝt+1 = ŝt + Et∆ŝt+1 + λ(ŝt)εc,t+1, (A124)

= ŝt − Et∆ĉt+1 +
1

γ

(
log β + r̂t + r̄ +

γ

2
(1− θ0)(1− 2ŝt)

)
+ λ(ŝt)εc,t+1, (A125)

= θ0ŝt +
1

γ
(e3 − e2B)A−1Z̃t − e1 [B − φI]A−1Z̃t + λ(ŝt)εc,t+1. (A126)

C.5.1. Recursion for zero-coupon consumption claims

We now derive the recursion for zero-coupon consumption claims in terms of state variables Z̃t, ŝt
and xt−1. Let P cnt/Ct denote the price-dividend ratio of a zero-coupon claim on consumption at time
t+n. The outline of our strategy here is that we first derive an analytic expression for the price-dividend
ratio for P c1t/Ct. For n ≥ 1 we guess and verify recursively that there exists a function Fn(Z̃t, ŝt, xt−1),
such that

P cnt
Ct

= Fn

(
Z̃t, ŝt, xt−1

)
. (A127)

The ex-dividend price-consumption ratio for a claim to all future consumption is then given by

Pt
Ct

= F
(
Z̃t, ŝt, xt−1

)
, (A128)
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where we define

F
(
Z̃t, ŝt, xt−1

)
=

∞∑
n=1

Fn

(
Z̃t, ŝt, xt−1

)
. (A129)

We now derive the recursion of zero-coupon consumption claims in terms of state variables Z̃t and
ŝt. The one-period zero coupon price-consumption ratio solves:

P c1,t
Ct

= Et

[
Mt+1Ct+1

Ct

]
(A130)

We simplify

Mt+1Ct+1

Ct
= βexp (Etmt+1 + Et∆ct+1 − γ(ŝt+1 − Etst+1)− (γ − 1)(ct+1 − Etct+1)) .

Using the notation fn = log(Fn), this gives the log one-period price-consumption ratio as:

f1

(
Z̃t, ŝt, xt−1

)
= −rt −

γ

2
(1− θ0)(1− 2ŝt) + g + Etxt+1 − φxt

+
1

2
(γλ(ŝt) + (γ − 1))

2
σ2
c , (A131)

= g + e1 [B − φI]A−1Z̃t +
1

2
(γλ(ŝt) + (γ − 1))

2
σ2
c

−r̄ − (e3 − e2B)A−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt) (A132)

Next, we solve for fn, n ≥ 2 iteratively. Note that:

P cnt
Ct

= Et
[
Mt+1Ct+1

Ct

P cn−1,t+1

Ct+1

]
= Et

[
Mt+1Ct+1

Ct
Fn−1

(
Z̃t+1, ŝt+1, xt

)]
(A133)

This gives the following expression for fn:

fn(Z̃t, ŝt, r̂t−1) = log
[
Et
[
exp

(
g + e1[B − φI]A−1Z̃t

−r̄ − (e3 − e2B)A−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt)

−(γ(1 + λ(ŝt))− 1)σcε1,t+1

+fn−1(Z̃t+1, ŝt+1, r̂t)
)]]

. (A134)

Here, ε1,t+1 denotes the first dimension of the shock εt+1.

C.5.2. Recursion for zero-coupon bond prices

We use P $
n,t and Pn,t to denote the prices of nominal and real n-period zero-coupon bonds. The

strategy is to develop analytic expressions for one- and two-period bond prices. We then guess and verify
recursively that the prices of real and nominal zero-coupon bonds with maturity n ≥ 2 can be written in
the following form:

Pn,t = Bn(Z̃t, ŝt, xt−1), (A135)

P $
n,t = exp(−nv∗t )B$

n(Z̃t, ŝt, xt−1), (A136)

where Bn(Z̃t, ŝt, xt−1) and B$
n(Z̃t, ŝt, xt−1) are functions of the state variables. As discussed in the main

paper, we assume that the short-term nominal interest rate contains no risk premium, so the one-period
log nominal interest rate equals it = rt+Etπt+1. Taking account of the constants, one-period bond prices
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equal:

P $
1,t = exp(−Y3,t − v∗t − r̄), (A137)

P1,t = exp(−Y3,t + EtY2,t+1 − r̄). (A138)

We next solve for longer-term bond prices including risk premia. Substituting in (A137) into the
bond-pricing recursion gives:

P $
2,t = Et

[
Mt+1P

$
1,t+1 exp(−v∗t+1 − Y2,t+1)

]
(A139)

= Et
[
Mt+1 exp(−Y3,t+1 − 2v∗t+1 − Y2,t+1 − r̄)

]
. (A140)

We can now verify that the two-period nominal bond price takes the form (A136):

B$
2(Z̃t, ŝt, xt−1) = exp (Et (mt+1 − Y3,t+1 − Y2,t+1)− r̄)

×Et

exp


−γ (λ(ŝt) + 1) ΣM − [(e2 + e3)Σ + 2e4]︸ ︷︷ ︸

v$

 vt+1


 .

(A141)

Here, we define the vector v$ to simplify notation. The random walk component of inflation v∗t does
not appear in (A141), because B$

2 is already scaled by exp(−2v∗t ) by definition (A136). Taking logs,
substituting out for Etmt+1, and using the definition for the sensitivity function λ(ŝt), we get:

b$2 = −e3[I +B]A−1Z̃t +
1

2
v$Σvv$′

+γ (λ(ŝt) + 1) ΣMΣvv
′
$ − 2r̄. (A142)

We similarly solve for two-period real bond prices in closed form:

P2,t = exp (Et (mt+1 − Y3,t+1 + Y2,t+2)− r̄)

×Et

exp

(−γ(λ(ŝt) + 1)ΣM − (e3 − e2B)Σ︸ ︷︷ ︸
vr

)vt+1




(A143)

We define the vector vr to simplify notation. Taking logs, substituting out for Etmt+1, and using the
definition for λ(ŝt) gives:

b2(Z̃t, ŝt, xt−1) = −(e3 − e2B) [I +B]A−1Z̃t +
1

2
vrΣvv

′
r + γ (λ(ŝt) + 1) ΣMΣvv

′
r − 2r̄.

(A144)

For n ≥ 3, we repeatedly substitute out for Etmt+1 to obtain the following recursion for real bond
prices:

Bn(Z̃t, ŝt, xt−1) = Et
[
exp

(
mt+1 + bn−1(Z̃t+1, ŝt+1, xt)

)]
= Et

[
exp

(
−r̄ − (e3 − e2B)A−1Z̃t −

γ

2
(1− θ0)(1− 2ŝt)

−γ(1 + λ(ŝt))σcε1,t+1 + bn−1(Z̃t+1, ŝt+1, xt)
)]
. (A145)

The recursion for nominal bond prices with n ≥ 3 is similar. It is complicated by the fact that we
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need to integrate over vLT,t+1, which is not necessarily spanned by εt+1:

B$
n(Z̃t, ŝt, xt−1) = Et

[
exp

(
mt+1 − Y2,t+1 − nvLTt+1 + b$n−1(Z̃t+1, ŝt+1, xt)

)]
. (A146)

To reduce the number of dimensions along which we need to integrate numerically, we split vLTt+1 into a
component that is spanned by εt+1 plus an orthogonal shock. This is useful because we can then use
analytic expressions to integrate over the orthogonal component. We use the standard expression for
conditional distributions of multivariate normal random variables. The distribution of vLTt+1 conditional
on εt+1 is normal with:

vLTt+1 |εt+1 ∼ N

(AΣΣve
′
4)︸ ︷︷ ︸

vec∗

′
εt+1, (σLT )2 − (AΣΣve

′
4)′(AΣΣve

′
4)︸ ︷︷ ︸

σ2
⊥

 . (A147)

We then write vLTt as the sum of two independent shocks:

vLTt+1 = vec∗εt+1 + ε⊥t+1, (A148)

where ε⊥t+1 is defined as

ε⊥t+1 := vLTt+1 − vec∗εt+1 (A149)

We integrate analytically over ε⊥t+1 in equation (A150):

B$
n(Z̃t, ŝt, xt−1) = Et

[
exp

(
mt+1 − Y2,t+1 − nvec∗εt+1 +

n2

2
(σ⊥)2 + b$n−1(Z̃t+1, ŝt+1, B

$xt)

)]
,

= Et
[
exp

(
−r̄ − e3A

−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt)

−(γ(1 + λ(ŝt))σc + e2A
−1e′1︸ ︷︷ ︸

vpi1

+ nvec∗e′1)ε1,t+1

−

e2A
−1e′2︸ ︷︷ ︸

vpi2

+ nvec∗e′2

 ε2,t+1

+
n2

2
(σ⊥)2 + b$n−1(Z̃t+1, ŝt+1, xt)

)]
. (A150)

We define the vectors vpi1 and vpi2 as given above to avoid computing them repeatedly in our numerical
algorithm.

C.5.3. Computing returns

The log return on the consumption claim equals:

rct+1 = log

(
P ct+1 + Ct+1

P ct

)
, (A151)

= ∆ct+1 + log

1 +
P ct+1

Ct+1

P ct
Ct

 . (A152)

Real and nominal log bond yields equal:

yn,t = − 1

n
bn,t, (A153)

y$
n,t = − 1

n
b$n,t + v∗t . (A154)
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Real log bond returns equal:

rn,t+1 = bn−1,t+1 − bn,t. (A155)

Nominal log bond returns equal:

r$
n,t+1 = b$n−1,t+1 − b$n,t − (n− 1)v∗t+1 + nv∗t . (A156)

Real and nominal bond log excess returns then equal:

xrn,t+1 = rn,t+1 − rt, (A157)

xr$
n,t+1 = r$

n,t+1 − it. (A158)

C.5.4. Levered stock prices and returns

We note that the price of the levered equity claim is δP ct , so the price-dividend ratio equals:

P δt
Dδ
t

= δ
Ct
Dδ
t

P ct
Ct
. (A159)

Using the expression

Dδ
t+1 = P ct+1 + Ct+1 − (1− δ)P ct exp (rt)− δP ct , (A160)

and

P δt = δP ct (A161)

gives the gross return on levered stocks:

(
1 +Rδt+1

)
=

Dδ
t+1 + P δt+1

P δt
, (A162)

=
1

δ

P ct+1 + Ct+1 − (1− δ)P ct exp(rt)
P ct

, (A163)

=
1

δ

(
1 +Rct+1

)
− 1− δ

δ
exp (rt) . (A164)

Log stock excess returns then equal:

xrδt+1 = rδt+1 − rt. (A165)

To mimic firms’ dividend smoothing in the data, we report simulated moments for the price of
equities dividend by dividends smoothed over the past 64 quarters:

P δt /

(
1

64
(Dδ

t +Dδ
t−1 + ...+Dδ

t−63)

)
. (A166)

C.6. Industry portfolio returns

We compute industry portfolio returns for industry j exactly as for the market but setting δj 6= δ.
For each industry j we set

δj =
δ

βj
, (A167)

where βj is the unconditional beta obtained from regressing quarterly industry returns onto quarterly
value-weighted market returns in the data for the sample 1993Q1-2019Q1.
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C.7. Risk-premium decomposition

We use the superscript rn for risk-neutral, superscript cf for cash flow, and rp for risk premium.
Risk-neutral valuations are expected cash flows discounted with the risk-neutral discount factor, that is
consistent with equilibrium dynamics for the real interest rate:

Mrn
t+1 = exp(−rt). (A168)

C.7.1. Risk-neutral zero-coupon bond prices

We use analogous recursions to solve for risk-neutral bond prices. One-period risk-neutral bond
prices are given exactly as before by equations (A137) and (A138). For n > 1, we guess and verify that
the prices of real and nominal risk-neutral zero-coupon bonds with maturity n can be written in the
following form

P rnn,t = Brnn (Z̃t, ŝt, xt−1), (A169)

P $,rn
n,t = exp(−nv∗t )B$,rn

n (Z̃t, ŝt, xt−1). (A170)

for some functions Brnn (Z̃t, ŝt, xt−1) and B$,rn
n (Z̃t, ŝt, xt−1).

We derive the two-period risk-neutral nominal bond price analytically:

P $,rn
2,t = exp(−rt)Et

[
P $,rn

1,t+1 exp(−v∗t+1 − Y2,t+1)
]

(A171)

= exp(−rt)Et
[
exp(−Y3,t+1 − 2v∗t+1 − Y2,t+1 − r̄)

]
. (A172)

We can hence verify that the two-period risk-neutral nominal bond price takes the form (A136)

b$,rn2 = −e3 [I +B]A−1Z̃t +
1

2
v$Σvv$′ − 2r̄ (A173)

Here, the vector v$ is identical to the case with risk aversion. Comparing expressions (A173) and (A142)
shows that they agree when γ = 0. We similarly solve for 2-period real bond prices in closed form:

P rn2,t = exp (−Y3,t + EtY2,t+1 − r̄)× exp (Et (−Y3,t+1 + Et+1Y2,t+2 − r̄))

×Et

exp

−(e3 − e2B)Σ︸ ︷︷ ︸
vr

vt+1


 . (A174)

The vector vr is again identical to the case with risk aversion. Taking logs gives:

brn2 (Z̃t, ŝt, xt−1) = −(e3 − e2B) [I +B]A−1Z̃t +
1

2
vrΣvv

′
r − 2r̄. (A175)

We note that the risk-neutral bond prices (A175) and bond prices with risk aversion (A144) are identical
when the utility curvature parameter γ equals zero.

For n ≥ 3 the n-period risk neutral real bond price Brnn satisfies the recursion:

Brnn (Z̃t, ŝt, xt−1) = Et
[
exp

(
−r̄ − (e3 − e2B)A−1Z̃t + bn−1(Z̃t+1, ŝt+1, xt)

)]
(A176)

We obtain a similar recursion for risk-neutral nominal bond prices:

B$,rn
n (Z̃t, ŝt, xt−1) = Et

[
exp

(
Y3,t + EtY2,t+1 − r̄ − Y2,t+1 − nv∗t+1 + b$n−1(Z̃t+1, ŝt+1, xt)

)]
.

We again use the decomposition v∗t+1 = vec∗εt+1 + ε⊥t+1 from Section C.5.2 to reduce the dimensionality
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of the numerical integration:

B$,rn
n (Z̃t, ŝt, xt−1) = Et

[
exp

(
−Y3,t + EtY2,t+1 − r̄ − Y2,t+1 − n · vec∗εt+1 +

n2

2
(σ⊥)2

+b$n−1(Z̃t+1, ŝt+1, xt)
)]
, (A177)

= Et

exp

−r̄ − e3A
−1Z̃t − (e2A

−1e′1︸ ︷︷ ︸
vpi1

+ n · vec∗e′1)ε1,t+1

−

e2A
−1e′2︸ ︷︷ ︸

vpi2

+ n · vec∗e′2

 ε2,t+1 +
n2

2
(σ⊥)2 + b$n−1(Z̃t+1, ŝt+1, xt)


 .
(A178)

C.7.2. Risk-neutral zero-coupon consumption claims

Next, we derive recursive solutions for the risk-neutral prices of zero-coupon consumption claims.
Let P c,rnnt /Ct denote the risk-neutral price-dividend ratio of a zero-coupon claim on consumption at time
t + n. The risk-neutral price-consumption ratio of a claim to the entire stream of future consumption
equals:

P c,rnt

Ct
=

∞∑
n=1

P c,rnnt

Ct
. (A179)

For n ≥ 1, we guess and verify there exists a function F rnn (Z̃t, ŝt, xt−1), such that

P c,rnnt

Ct
= F rnn

(
Z̃t, ŝt, xt−1

)
. (A180)

We start by deriving the analytic expression for F rn1 . The one-period risk-neutral zero-coupon price-
consumption ratio solves

P c,rn1,t

Ct
= exp (−Y3,t + EtY2,t+1 − r̄)Et

[
Ct+1

Ct

]
(A181)

Using (A83) to substitute for consumption growth, we can derive the following analytic expression for
frn1 :

frn1 (Z̃t, ŝt, xt−1) = − (e3 − e2B)A−1Z̃t − r̄ + g + e1[B − φI]A−1Z̃t +
1

2
σ2
c .

(A182)

Next, we solve for fn, n ≥ 2 iteratively:

P c,rnnt

Ct
= exp (−Y3,t + EtY2,t+1 − r̄)Et

[
Ct+1

Ct
F rnn−1

(
Z̃t+1, ŝt+1, xt

)]
(A183)

This gives the following expression for frnn :

frnn (Z̃t, ŝt, xt−1) = log [Et [exp (− (Y3,t + EtY2,t+1)− r̄ + g − φxt + Etxt+1 + σcε1,t+1

+frnn−1(Z̃t+1, ŝt+1, xt)
)]]

. (A184)

Finally, we re-write frnn,t as an expectation involving frnn−1,t+1, the state variables Z̃t, and period t + 1
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shocks:

frnn (Z̃t, ŝt, xt−1) = log
[
Et
[
exp

(
g + e1[B − φI]A−1Z̃t − r̄ − (e3 − e2B)A−1Z̃t+

+σcε1,t+1 + frnn−1(Z̃t+1, ŝt+1, xt)
)]]

. (A185)

C.7.3. Risk-neutral returns

We plug risk-neutral price-consumption ratios and bond prices into equations (A152) through (A158).
This gives risk-neutral returns on the consumption claim, risk-neutral log excess bond returns, and risk-
neutral bond yields. We then substitute risk-neutral returns on the consumption claim into (A164)-(A165)
to obtain risk-neutral log excess stock returns.

C.8. Modeling FOMC High-Frequency Asset Prices

In order to simulate high-frequency changes in stocks and bonds around FOMC announcements, we
decompose the quarterly shock into a pre-FOMC and an FOMC component, which are assumed to be
uncorrelated

vt = vpret + vFOMC
t . (A186)

We therefore effectively model FOMC dates as occurring always at the end of the quarter, because that
is the only date when we compute asset prices. The variance-covariance matrix of shocks released prior
to the FOMC announcement is

Σprev = Σv − diag
(
[σFOMC
x , σFOMC

π , σFOMC
ST , σFOMC

LT ]
)
. (A187)

We then split the rotated εt shock similarly according to

εpret = AΣvpret , (A188)

εFOMC
t = AΣvFOMC

t . (A189)

The aggregate dynamics and asset pricing solution are of course unchanged to before, because the
distribution of quarterly fundamental shocks vt is unchanged. But splitting it into two independent
shocks allows us to differentiate asset prices before vs. after the FOMC shock vFOMC

t .
We compute pre-FOMC asset prices very simply at the expected quarter t state vector before the

FOMC shock is realized. The expected pre-FOMC state variables plus consumption are given by

Z̃pret = B̃Z̃t−1 + εpret , (A190)

Y pret = BYt−1 +A−1εpret , (A191)

ŝpret = θ0ŝt−1 + θ1Y1,t−1 + θ2Y1,t−2 + ...λ(ŝt−1, S̄)σcε
pre
1,t , (A192)

cpret = g + ct−1 + (Y pre1,t − φY1,t−1), (A193)

v∗,pret = v∗t−1 + vLT,pret . (A194)

We compute pre-FOMC stock and bond prices by substituting the pre-FOMC state vector into the
solutions from the asset pricing value function iterations:

P pret

Cpret

= F
(
Z̃pret , ŝpret , xt−1

)
, (A195)

P $,pre
n,t = exp

(
−nv∗,pret

)
B$
n

(
Z̃pret , ŝpret , xt−1

)
, (A196)

P pren,t = Bn

(
Z̃pret , ŝpret , xt−1

)
(A197)
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The pre-FOMC nominal and real log bond yields are then given by

y$,pre
n,t = −n log

(
P $,pre
n,t

)
, (A198)

ypren,t = −n log
(
P pren,t

)
. (A199)

Pre-FOMC breakeven is computed as

breakevenpren,t = y$,pre
n,t − ypren,t . (A200)

We then compute simulated changes in the short-term nominal interest rate, as well as long-term bond
yields and breakeven around FOMC announcements

∆iFOMC
t = (Y3,t + v∗t )−

(
Y pre3,t + v∗,pret

)
, (A201)

∆y$,FOMC
n,t = y$

n,t − y
$,pre
n,t , (A202)

∆yFOMC
n,t = yn,t − ypren,t , (A203)

∆breakevenFOMC
n,t = breakevenn,t − breakevenpren,t . (A204)

Stock returns around the FOMC date are computed assuming that no consumption takes place
during the FOMC interval (equivalently, the FOMC intervals is infinitesimal), so

rc,FOMC
t = log

exp(ct − cpret )

P ct
Ct

P c,pret

Cpret

 . (A205)

The levered stock market return around the FOMC date then is

rδ,FOMC
t = log((1/δ)exp(rc,FOMC

t )− ((1− δ)/δ)), (A206)

which follows from using the standard formula for levered stock returns while setting the real interest
rate and consumption to zero, because the FOMC interval is infinitesimal.Returns for industry j around
the FOMC announcement are computed by using δj rather than δ in the expression (A206).

D. Solving for Asset Prices numerically

We evaluate asset prices by iterating on a grid for the state vector as in Campbell et al. (2020)
building on Wachter (2005). Other numerical methodologies are faster, but their cost is that they
cannot replicate the economic properties of Wachter (2005)’s numerical solution for Campbell-Cochrane.
Lopez, López-Salido, and Vazquez-Grande (2018) develop an analytically convenient solution method,
that approximates the sensitivity function λ by an affine function. While their method is analytically more
convenient than ours, their Figure 1 shows an average price-dividend ratio of around 25 for the original
Campbell and Cochrane (1999) model, whereas Wachter (2005)’s numerical best practices yield a price-
dividend ratio of 35. Figure 1 in Lopez, López-Salido, and Vazquez-Grande (2018) also shows clearly that
perturbation methods and global solution methods generate similarly economically meaningful differences
with Wachter (2005)’s best practice numerical solution. In unreported results, we verified that analytic
affine approximations to the sensitivity function λ (such as in Lopez, López-Salido, and Vazquez-Grande
2015), numerical higher-order perturbation methods using Dynare (Rudebusch and Swanson 2008), and
global projection methods give solutions for Campbell-Cochrane that are economically very different from
Wachter (2005)’s numerical solution. We therefore follow the practice of Wachter (2005) and extend the
numerical grid solution to our setting with multiple state variables, which is facilitated by the log-linear
dynamics of macroeconomic state variables.

Other approaches in the literature are also not appropriate for our problem. While Chen (2017) solves
a model with habit and production using global projection and perturbation methods, his model features
a linear sensitivity function and heteroskedastic consumption. Andreasen (2020) also uses perturbation
methods for a model with heteroskedastic shocks. By contrast, we have homoskedastic consumption and
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the highly nonlinear sensitivity function required to make the real risk-free rate well-behaved means
that perturbation methods do not work well. Similarly, affine term structure models, such as Dai
and Singleton (2000), generate affine relations between risk premia and state variables by assuming
analytically convenient functional forms for the pricing kernel. In contrast to models that assume more
convenient pricing kernels, our preferences are consistent with the standard log-linear New Keynesian
consumption Euler equation and generate conditionally homoskedastic macroeconomic dynamics.

While iterating on a grid is significantly slower than perturbation or global projection methods, it is
not prohibitively so, taking about 2minutes on a standard laptop.

D.1. Implementing the asset pricing recursions

We implement the recursions in Sections C.5.1 and C.5.2 numerically through value function iteration
on a grid. We solve for the functions fn, bn, and b$n using value function iteration along a five-dimensional
state vector. We use a five-dimensional grid, with the first three dimensions corresponding to Z̃t, the
fourth dimension corresponding to ŝt, and the fifth dimension corresponding to xt−1.

D.1.1. Grid

In this Section, we use Z̃, ŝ, x to denote the corresponding time-t variables. We use superscripts
− to denote variables in the previous period and + to denote variables in the next period. We solve

numerically for fn, bn, and b$n as functions of the vector of state variables
[
Z̃, ŝ, x−

]
.

Our grid is densest along the ŝ dimension to capture important non-linearities of asset prices with
respect to the surplus consumption ratio. Following Wachter (2005), we choose a grid for the surplus
consumption ratio that consists of an upper segment and a lower segment and covers a wide range of
values for st. Let Sgrid,1 denote a vector of 20 equally spaced points between 0 and Smax with Smax
included and sgrid,2 a vector of 30 equally spaced points between min (log (Sgrid,1)), and −50. The grid
for ŝt = st − s̄ then consists of the concatenation of sgrid,2 − s̄ and log (Sgrid,1)− s̄.

We find that bond and stock prices are close to loglinear in Z̃ and x̂−, so coarser grids are sufficient
along those dimensions of the state vector. In fact, the analytic expressions for f1, b2, and b$2 show that
one-period zero-coupon consumption claims and two-period bond prices are exactly log-linear in Z̃ and
x−. Numerical results indicate that this property translates to longer-period claims and fn, bn, and b$n
are still approximately linear in Z̃ and x− for general n. To speed up the value function iteration, we
therefore use two grid points for each dimension of Z̃ and for x−.

For Z̃, we use an equal-spaced three-dimensional grid. Let N denote the number of grid points along
each dimension and m the width of the grid as a multiple of the unconditional standard deviation of
Z̃. For each dimension of Z̃, we choose a grid of N equal-spaced points with the lowest point equal to
−m × std(Z̃) and the highest point equal to m × std(Z̃). Here, the unconditional variance-covariance
matrix of Z̃ is determined implicitly by the equation:

std(Z̃) =

√
B̃V ar

(
Z̃
)
B̃′ + diag(1, 1, 1). (A207)

For our baseline grid, we set N = 2 and m = 2.
For x−, we consider an equal-spaced grid with sizexm points ranging from

min
(
e1AZ̃t : Z̃ ∈ grid

)
to max

(
e1AZ̃ : Z̃ ∈ grid

)
. This choice of grid ensures that the grid for x−

covers the entire range of output gap values implied by the grid for Z̃. In our baseline evaluation, we set
sizexm = 2.

With N = 2 grid points along each of the three dimensions of Z̃, 50 gridpoints for ŝ, and sizexm = 2
grid points for x−, the combined grid has a total of 23 · 50 · 2· = 800 points.

D.1.2. Numerical integration

Following Wachter (2005), we use Gauss-Legendre quadrature to evaluate the expectations (A134),
(A145), and (A150) numerically. Gauss-Legendre quadrature is orders of magnitude faster than
computing expectations by simulation. As in Wachter (2005), we evaluate infinite integrals over the
density of standardized consumption shocks (ε1,t) using 40 integration node points and an integration
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domain ranging from −8 standard deviations to +8 standard deviations. To conserve speed and memory,
we integrate over shocks orthogonal to surplus consumption (ε2,t) using a somewhat smaller number of
integration node points, 15, but again an integration domain of ±8 standard deviations. To evaluate
bond and stock prices at points that are not on the grid, we use loglinear multi-linear interpolation and
extrapolation.

For completeness, we recap the key features of Gauss-Legendre integration. Let xGLi, i = 1, ..., NGL
and wGLi = 1, ..., NGL denote the Gauss-Legendre nodes and weights of NGLth order. Gauss-Legendre
quadrature then approximates a definite integral of any smooth function f on the interval [−1, 1] by∫ 1

−1
f (x) dx ≈

∑NGL
i=1 wGLif (xGLi). By change of variable, it is immediate that we can approximate

the integral of a smooth function f on an interval [−ā, ā] by

∫ ā

−ā
f (x) dx ≈

NGL∑
i=1

ā× wGLi︸ ︷︷ ︸
wGLāi

f

ā× xGLi︸ ︷︷ ︸
xGLāi

 . (A208)

Here, we use xGLāi and wGLāi to denote Gauss-Legendre node points and weights scaled to the interval
[−ā, ā].

We implement Gauss-Legendre quadrature to take expectations over εt+1 as follows. Let N1 denote
the number of Gauss-Legendre nodes and ā1 denote the integration domain for the shock ε1,t, that
is perfectly correlated with output innovations. We set xGL1,i = xGLā1

i and wGL1,i = wGLā1
i for

i = 1, ..., N1, where the weights and nodes are as defined in equation (A208). Moreover, we set

pGL1,i =
1√
2π
exp

(
−xGL2

1,i

)
wGL1,i/

N1∑
i=1

(
1√
2π
exp

(
−xGL2

1,i

)
wGL1,i

)
, (A209)

and use the scaled weights pGL1,i for numerical integration. The scaling of (A209) ensures that the
numerical expectation of a constant is evaluated to be the same constant (or intuitively that discretized
probabilities sum to one).

We then evaluate numerically the expectation of any smooth function f of ε1,t via:

E [f (ε1,t)] =

∫ ∞
−∞

1√
2π
exp

(
−ε21

)
f (ε1) dε1, (A210)

≈
∫ ā1

−ā1

1√
2π
exp

(
−ε21

)
f (ε1) dε1, (A211)

≈
N1∑
i=1

pGL1,if (xGL1,i) . (A212)

Accuracy increases with ā1 and N1. We follow Wachter (2006) in setting N1 = 40 and ā1 = 8.
To take expectations over ε2,t and ε3,t, we similarly use Gauss-Legendre quadrature with integration

domain ā2 = 8 and number of nodes N2 = 15. We set xGL2,i = xGLā2
i and wGL2,i = wGLā2

i for
i = 1, ..., N2 and define the scaled weights:

pGL2,i =
1√
2π
exp

(
−xGL2

2,i

)
wGL2,i/

N2∑
i=1

(
1√
2π
exp

(
−xGL2

2,i

)
wGL2,i

)
, (A213)

The weights and nodes for ε3,t are identical to those of ε2,t.
Since ε1,t, ε2,t, and ε3,t are independent, we can evaluate the expectation of any smooth function
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f (ε1,t, ε2,t, ε2,t) as

Ef (ε1,t, ε2,t, ε3,t) =

∫ ∞
−∞

1√
2π
exp

(
−ε21

) ∫ ∞
−∞

1√
2π
exp

(
−ε22

) ∫ ∞
−∞

1√
2π
exp

(
−ε23

)
f (ε1, ε2, ε3) dε1dε2dε3,

≈
N1∑
i=1

pGL1,i

 N2∑
j=1

pGL2,j

[
N3∑
k=1

pGL3,kf (xGL1,i, xGL2,j , xGL3,k)

] . (A214)

D.1.3. Recursive step

Let a superscript num denote the numerical counterparts to the analytic functions fn, bn, b$n. We

start by initializing fnum1

(
Z̃, ŝ, x−

)
, bnum2

(
Z̃, ŝ, x−

)
, and b$,num2

(
Z̃, ŝ, x−

)
at each grid point according

to the analytic expressions (A132), (A142) and (A144).
Next, we apply the recursive expressions (A134), (A145), and (A150) along the grid. Having

computed fnumn−1 along the entire grid, we evaluate fnumn

(
Z̃, ŝ, x−

)
at a grid point

(
Z̃, ŝ, x−

)
as follows.

We compute the expectation (A134) numerically as:

fnumn (Z̃, ŝ, x−) = log

 N1∑
i=1

pGL1,i

 N2∑
j=1

pGL2,j

[
N3∑
k=1

pGL3,k · exp
(
g + e1[B − φI]A−1Z̃

−r̄ − (e3 − e2B)A−1Z̃ − γ

2
(1− θ0)(1− 2ŝ)

−(γ(1 + λ(ŝ))− 1)σc × xGL1,i

+fnumn−1

B̃Z̃ +

 xGL1,i

xGL2,j

xGL3,k

 , θ0ŝ+ θ1x+ θ2x
− + λ (ŝ)xGL1,i, x

 ,
(A215)

where we evaluate x as a function of the state vector as

x = e1A
−1Z̃. (A216)

To compute the right-hand-side of (A215), we need to evaluate fnumn−1 at points that are not on our grid.
We interpolate fnumn−1 linearly (and hence Fnumn−1 log-linearly). When the argument is outside the range of
the grid, we extrapolate fnumn−1 linearly. It is clear from (A132) that linear inter- and extrapolation gives a

good approximation of f1. In fact, we can see that f1 is exactly linear in Z̃, independent of x−, and that
it depends on λ(ŝ) = λ0

√
1− 2ŝ. We accommodate the fact that f1 is not linear in ŝ by choosing a much

denser grid along the ŝ dimension. We do not have analytic expressions for fn, n > 1 (after all, that’s
why we need a numerical solution), but numerical solutions indicate that linear inter- and extrapolation
gives good approximations for fn with the chosen grid.

In terms of coding (A215), we face a trade-off between speed and readability of the code. We pre-
allocate matrices outside loops and we code linear interpolation by hand (rather than using a pre-written
interpolation routine) to conserve speed and memory. We also inline the linear interpolation steps (i.e.
write them directly into the main function rather than calling a separate interpolation function). This
speeds up the code substantially, while reducing its readability.

There are different methods to interpolate multidimensional functions. Specifically, we use multi-
linear interpolation, corresponding to interpolating along each dimension one at a time. In order to
enhance computational speed we do not rely on a pre-programmed interpolation routine, instead coding
our own minimal interpolation routine. It is well-known that the result of multi-linear (or in the two-
dimensional case bi-linear) interpolation does not depend on in which order one interpolates the different

arguments. We find it convenient to interpolate fnumn−1

(
Z̃, ŝ, x−

)
first along the x− dimension, then along

ŝ, then along Z̃1, and finally along the Z̃2 and Z̃3 dimensions.
Finally, we evaluate the price-consumption ratio for the aggregate consumption stream by
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approximating it as the sum of the first 300 zero-coupon consumption claims:

Fnum
(
Z̃t, ŝt, xt−1

)
=

300∑
n=1

exp
(
fnumn (Z̃t, ŝt, xt−1)

)
. (A217)

We iterate bnumn

(
Z̃, ŝ, x−

)
and b$,numn

(
Z̃, ŝ, x−

)
similarly according to:

bnumn (Z̃t, ŝt, xt−1) = log

 N1∑
i=1

pGL1,i

 N2∑
j=1

pGL2,j

[
N3∑
k=1

pGL3,k

· exp
(
−r̄ − (e3 − e2B)A−1Z̃ − γ

2
(1− θ0)(1− 2ŝ)

−γ (1 + λ(ŝ))σc × xGL1,i

+bnumn−1

B̃Z̃ +

 xGL1,i

xGL2,j

xGL3,k

 , θ0ŝ+ θ1x+ θ2x
− + λ (ŝ)xGL1,i, x

 ,
(A218)

and

b$,numn (Z̃t, ŝt, xt−1) = log

 N1∑
i=1

pGL1,i

 N2∑
j=1

pGL2,j

[
N3∑
k=1

pGL3,k (A219)

· exp
(
−r̄ − e3A

−1Z̃ − γ

2
(1− θ0)(1− 2ŝ)

− (γ (1 + λ(ŝ))σc + vpi1 + n · vec∗e′1)× xGL1,i

− (vpi2 + n · vec∗e′2)xGL2,j +
n2

2

(
σ⊥
)2

+b$,numn−1

B̃Z̃ +

 xGL1,i

xGL2,j

xGL3,k

 , θ0ŝ+ θ1x+ θ2x
− + λ (ŝ)xGL1,i, x

 ,
(A220)

We again use multi-linear interpolation and extrapolation to evaluate b$,numn−1 and bnumn−1 at points that
are not on the grid. We similarly implement the recursions (A176), (A178), and (A185) numerically to
obtain risk-neutral bond and consumption claim valuations Brn,numn , Brn,$,numn , Grn,num.

D.2. Simulating the Model

We simulate a draw of length T . Model results in Tables 3, 4, 5, 6, and 7 use T = 10000 and discard
the first 100 simulation periods to ensure that the system has reached the stochastic steady-state.

We use superscript sim to denote simulated quantities. We use the MATLAB function mvnrnd
to obtain independent draws vsimt ∼ N (0,Σv) for t = 1, 2, ..., T . We then obtain the rotated shock

according to εsimt = AΣvsimt and vLT,simt = e4Σvsimt . We generate draws for Z̃simt , t = 1, ..., T by setting
Z̃sim1 = 0 and then updating according to (A107). We obtain the simulated non-rotated state vector for
t = 1, 2, ..., T through the relation Y simt = A−1Z̃simt . We generate draws for the surplus consumption
ratio by setting ŝsim1 = 0 and xsim0 = 0 and then updating according to (A116). We generate the
simulated random walk component of inflation v∗t , t = 1, 2, ..., T by starting from v∗1

sim = 0 and updating
it according to equation (A100). We initialize simulated log consumption at csim1 = 0 and update it using
(A83). We then drop the first 100 simulation periods to allow the system to converge to the stochastic
steady-state.

Having generated draws for the five state variables Z̃sim, ŝsim, and xsimt−1 , we obtain the simulated

consumption-claim price-dividend ratio as (P c/C)
sim
t = Fnum

(
Z̃simt , ŝsimt , xsimt−1

)
, n-period real bond
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prices as

P simn,t = Bnumn

(
Z̃simt , ŝsimt , xsimt−1

)
, and

B$,sim
n,t = B$,num

n

(
Z̃simt , ŝsimt , xsimt−1

)
. We obtain the corresponding risk-neutral valuation ratios by

plugging into the risk-neutral asset pricing solutions:

(P c/C)
rn,sim
t = F rn,num

(
Z̃simt , ŝsimt , xsimt−1

)
,

P rn,simn,t = Brn,numn

(
Z̃simt , ŝsimt , xsimt−1

)
, and

Brn,$,simn,t = Brn,$,numn

(
Z̃simt , ŝsimt , xsimt−1

)
. We obtain nominal bond prices P $,sim

n,t by combining B$,sim
n,t

and v∗t
sim according to (A136). We similarly obtain risk-neutral nominal bond prices P rn,$,simn,t by

combining Brn,$,simn,t and v∗t
sim according to (A136).

To deal with the fact that Z̃simt , ŝsimt , xsimt−1 are not usually on grid points we adopt a similar
linear interpolation strategy as in the numerical evaluation of the asset pricing recursions described
in Section D.1.3. We interpolate Fnum, Bnumn , and B$,num

n log-linearly. We simplify the interpolation
strategy slightly compared to Section D.1.3. We use the MATLAB function griddedInterpolant, sacrificing
some computational speed for simpler code. Even though rare events (and especially extremely negative
realizations for ŝ) matter for the value function iteration in Section D.1.3, low-probability events have
very little impact on the properties of simulated asset prices taking as given Fnum, Bnum, and B$,num.
We therefore simplify the log-linear interpolation by truncating Z̃simt , ŝsimt , and xsimt−1 at the maximum
and minimum values covered by the grid.

Having generated
(
P c

C

)sim
t

, t = 1, ..., T , we compute log returns on the consumption claim rc,simt+1

according to (A152). We obtain simulated price-dividend ratios for levered stocks by plugging into
(A159). Finally, we obtain log bond yields and stock and bond excess returns as described in Section

C.5.3. Risk-neutral bond and stock returns are computed by substituting
(
P c

C

)rn,sim
, P rn,$,simn,t , and

P rn,simn,t into the same relations.
We simulate pre-FOMC asset prices as follows. We use the MATLAB function mvnrnd to generate

independent draws for the FOMC shock

vFOMC,sim
t ∼ N

(
0, diag

([
0, 0,

(
σFOMC
ST

)2
,
(
σFOMC
LT

)2]))
, where t = 1, ..., T . Having drawn the FOMC

shock vFOMC,sim
t we obtain the simulated pre-FOMC component of the overall quarterly simulated shock

as

vpre,simt = vsimt − vFOMC,sim
t , (A221)

εpre,simt = AΣvpre,simt . (A222)

We then use the simulated values for Z̃simt−1 , Y simt−1 , csimt−1 , ŝsimt−1 , v∗t−1 and εpre,simt to compute the simulated
pre-FOMC state vector according to equations (A190) through (A194). We then obtain pre-FOMC
asset prices by substituting the simulated pre-FOMC state vector into equations (A195) through (A194).
Simulated yield changes around FOMC news are then computed according to equations (A201) and
(A204) and simulated FOMC stock returns are obtained according to equation (A206). Quarterly and
high-frequency returns for industry j are generated analogously to market returns but using δj instead
of δ.

D.3. Parameter units

This subsection details the relation between parameter values in empirical (reported in the paper)
and natural units (used for solving the code). We solve the model in natural units. However, it is most
natural to report empirical moments and summary statistics in empirical units for interpretability.

For comparability with empirical moments, Table 1 reports model parameters in units that
correspond to the output gap in annualized percent, and inflation and interest rates in annualized percent.
As in Campbell et al. (2020), we report the discount rate and the persistence of surplus consumption in
annualized units. Concretely, Table 1 reports the following scaled parameters (for completeness we also
list parameters where natural and empirical units are the same):
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400× g, (A223)

γ, (A224)

400× r̄, (A225)

θ4
0, (A226)

θ1, (A227)

(A228)

4× γx, (A229)

ρi, (A230)

400× σMP , (A231)

φ, (A232)

δ (A233)

Table 2 lists the following scaled implied parameter values

β4, (A234)

S̄, (A235)

Smax, (A236)

ρx, (A237)

fx, (A238)

1

4
× ψ, (A239)

θ2. (A240)

D.4. Switching off shocks and PC slope in numerical solution

To switch off the shocks we don’t need, we set the following near-zero values for the standard
deviations of the demand, Phillips curve, and long-term inflation target (random walk) shocks. The
exact numerical values are chosen so that the solution remains invertible, but has converged as the shock
volatilities approach zero:

σx = 10−9, (A241)

σPC = 10−9, (A242)

σLT = 10−9. (A243)

We set the slope of the Phillips curve to κ = 2.455710−5. To ensure that the numerical solutions
work, we need to choose a value for ρπ = 0.508. We have verified that the exact parameter values for σx,
σPC , and σLT , κ and ρπ do not matter for the asset pricing moments. We have also checked that the
asset pricing moments for real and nominal bonds at these parameter values are identical, so the asset
prices seem to have converged as the volatilities of these no-longer needed shocks converge to zero.

E. Additional Model Results

E.1. Comparative Statics by θ1

In this Section, we complement Figure 2 by reporting quarterly stock returns and macroeconomic
moments for different value for the habit parameter θ1. Our baseline calibration corresponds to θ1 =
−0.90, while the Campbell and Cochrane (1999) preferences correspond to θ1 = 0. In the top panel of
Table A1, we report the habit coefficients θ1. The parameter θ2 is chosen according to equation (16).

The second panel in Table A1 shows quarterly moments of model stock returns. We see that the
equity premium, equity volatility, persistence of price-dividend ratio, and stock return predictability are

28



almost completely unaffected by varying θ1. The final panel shows macroeconomic moments. As in
Figure 2, we see that the habit parameter θ1 matters for output response to a monetary policy shock. In
particular, we need θ1 = −0.90 to match the lag and size of the trough output response to a monetary
policy shock in the data.
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Table A1 Quarterly Asset Prices for Different Habit Parameter Values

Parameters Model: Varying θ1

Baseline CC99
θ1 Data -0.99 -0.95 -0.90 -0.70 -0.50 -0.30 -0.10 0.00

Stocks
Equity premium 7.84 7.23 7.26 7.29 7.39 7.46 7.51 7.55 7.56
Volatility 16.87 14.75 14.81 14.87 15.09 15.25 15.36 15.45 15.48
Sharpe Ratio 0.47 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
AR(1) Coeff. pd 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
1-YR Excess Returns on pd -0.38 -0.34 -0.34 -0.34 -0.34 -0.33 -0.33 -0.33 -0.33
1-YR Excess Returns on pd (R2) 0.23 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

Macroeconomic Dynamics
Std. Annual Consumption Growth 1.5 1.57 1.57 1.55 1.44 1.29 1.15 1.04 1.00
Std. Annual Change fed funds Rate 1.35 2.16 2.14 2.13 2.07 2.04 2.03 2.03 2.03
Trough Output Response to 100 bps FF Shock -0.7 -0.74 -0.73 -0.71 -0.64 -0.57 -0.51 -0.51 -0.52
Lag Trough Output Response 4 5 4 4 3 2 2 1 1

Note: This table solves for quarterly stock return moments and macroeconomic moments at different values for the habit parameter θ1. Our baseline calibration, reported in
Table 3 in the main paper, corresponds to θ1 = −0.90. Campbell and Cochrane (1999, CC99) preferences correspond to θ1 = θ2 = 0. For any value of θ1, the parameter θ2 is
determined via equation (16) in the main paper.
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E.2. Comparative statics by monetary policy rule parameter

In this Section we illustrate comparative statics of our key results across different values for the
monetary policy rule parameter γx. Figure A1 plots key calibration outcomes on the y-axis against the
monetary policy rule parameter γx on the x-axis. Each dot corresponds to a separate model calibration
with a different parameter value for γx. All other parameters are held constant at their baseline values.

The top-left panel shows our benchmark regression coefficient of stock returns onto model high-
frequency monetary policy shocks, exactly as in Table 4 in the main paper. The top-right panel shows
the regression coefficient of 10-year nominal bond yields onto model high-frequency monetary policy
shocks (as in column (2) of Table 7 in the main paper). We see that the stock and nominal bond yield
responses to monetary policy shocks are strong across a very wide range of values γx, so our benchmark
high-frequency model results are robust.
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Fig. A1 Model Bond and Stock Responses to Monetary Policy Shocks - Against Monetary Policy Parameter γx

Note: This figure shows the effects of varying the output gap coefficient in the monetary policy rule, γx, on the regression coefficient of stock returns on the fed funds surprise
(as in column 4 of Table 4 in the main paper), the regression coefficient of 10-year nominal bond yields on the fed funds surprise (as in column (1) of Table 7 in the main
paper), the 10-year nominal bond-stock beta, and the slope of the nominal yield curve. Parameter γx ranges from 0.05 to 1.50 (30 grid points). The Phillips curve slope is held
constant at κ = 0 throughout. For each parameter value, asset pricing moments are computed from a simulation of length 10,000.
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E.3. Model Robustness: Larger volatility of FOMC surprises

In this Section, we verify that all our main model results are unchanged if we increase the volatility of
FOMC date shocks by an order of magnitude. In this Section, we show results with σFOMC

MP = 4.65bps =
0.0465%, which is somewhat smaller than the value used in the main paper of 6.52bps, and the much the
larger value σFOMC

MP = 46.5bps = 0.465%.
Table A2 compares the model stock return regressions with these different values for the volatility of

FOMC date shocks. All results are numerically almost identical. The only difference to note is that with
σFOMC
MP = 46.5bps the model implies a larger coefficient on FF Shock × (FF Shock >0), i.e. the effect of

monetary policy shocks is somewhat more asymmetric. This is as expected, since risk premia in the model
are convex in consumption shocks but differentiable (i.e. locally linear) when shocks are small. Table A3
shows that the state-contingency of stock responses and bond yield responses are also unchanged when
we increase σFOMC

MP by a full order of magnitude. We therefore conclude that our calibration results are
largely insensitive to this parameter within a reasonable range.
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Table A2 Stock Market onto High-Frequency Monetary Policy Shocks – Larger FOMC Date Shocks

Baseline Model: σFOMC
MP = 6.52

FF Shock -6.37 -6.31
FF Shock × (FF Shock >0) -0.07

Robustness Check: σFOMC
MP = 4.65

FF Shock -6.37 -6.31
FF Shock × (FF Shock >0) -0.06

Robustness Check: σFOMC
MP = 46.5

FF Shock -6.37 -6.13
FF Shock × (FF Shock >0) -0.44

Note: This table shows model robustness for Table 4 in the main paper, but uses different volatilities of FOMC date shocks σFOMC
MP . For comparison, the main results in Table

4 use σFOMC
MP = 6.52bps. We show model regressions of the form rFOMC

mkt,t = bmkt,0 + bmkt,1∆FOMC it + εmkt,t, where rFOMC
mkt,t is the high-frequency stock market around of

FOMC announcements. Model data is obtained from a simulation of length 10,000.
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Table A3 Stock Returns onto High-Frequency Monetary Policy Shocks by Risk Aversion – Larger FOMC Date Shocks

Mkt Utils NoDur Hlth Enrgy Shops Telcm Manuf Other Durbl HiTec
Baseline Model: σFOMC

MP = 6.52
FF Shock -5.39 -2.43 -3.5 -3.5 -3.94 -4.47 -5.12 -5.28 -5.61 -6.69 -7.49
FF Shock × (RAt>Median) -1.97 -0.89 -1.28 -1.28 -1.44 -1.64 -1.87 -1.93 -2.05 -2.44 -2.74

Robustness Check: σFOMC
MP = 4.65

FF Shock -5.39 -2.43 -3.5 -3.5 -3.94 -4.47 -5.12 -5.28 -5.61 -6.69 -7.49
FF Shock × (RAt>Median) -1.97 -0.89 -1.28 -1.28 -1.44 -1.64 -1.87 -1.93 -2.05 -2.44 -2.74

Robustness Check: σFOMC
MP = 46.5

FF Shock -5.39 -2.42 -3.50 -3.50 -3.93 -4.47 -5.12 -5.28 -5.60 -6.68 -7.49
FF Shock × (RAt>Median) -1.99 -0.89 -1.29 -1.29 -1.45 -1.65 -1.89 -1.95 -2.07 -2.47 -2.77

Note: This table shows model robustness for Table 6 in the main paper, but uses different values for the volatility of FOMC date shocks σFOMC
MP . It reports model regressions

of the form rFOMC
j,t = bj,0 + bj,1∆FOMC it + bj,2∆FOMC it(RAt > Median) + bj,3(RAt > Median) + εj,t. Here, rFOMC

j,t is the high-frequency industry or market return

around FOMC announcements, and ∆FOMC it is the high-frequency fed funds rate shock. Industries are sorted by their quarterly stock market beta from left to right, as in
Table 5. Model data is obtained from a simulation of length 10,000.
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E.4. Model Robustness: Varying the Phillips Curve Slope

In this section, we show that our calibration properties in Table 3 and the baseline stock results in Table 4 are insensitive to setting different
values for the Phillips curve slope parameter κ. Our baseline results reported in the main paper correspond to κ = 0.0062. Here, we also report κ = 0
(i.e. prices are perfectly sticky), and κ = 0.0045 (price-stickiness parameter α = 0.9).

Table A4 Unconditional Quarterly Model Properties

Data
Model

Stocks κ = 0 κ = 0.0045 κ = 0.0062
Equity Premium 7.84 7.11 7.34 7.29
Volatility 16.87 17.31 14.98 14.87
Sharpe Ratio 0.47 0.41 0.49 0.49
AR(1) Coeff. pd 0.92 0.94 0.93 0.93
1-YR Excess Returns on pd -0.38 -0.29 -0.33 -0.34
1-YR Excess Returns on pd (R2) 0.23 0.06 0.07 0.07

10-Year Nominal Bonds
Yield Spread 1.87 1.01 0.99 0.94
Volatility Excess Returns 9.35 4.20 2.86 2.57
1-YR Excess Returns on Yield Spread 2.69 -0.30 -0.20 -0.18
1-YR Excess Returns on Yield Spread (R2) 0.14 0.01 0.01 0.01

Macroeconomic Dynamics
Std. Annual Cons. Growth 1.50 1.52 1.54 1.55
Std. Annual Change fed funds Rate 1.35 2.10 2.12 2.13
Trough Output Response to 100 bps fed funds Surprise -0.70 -0.71 -0.71 -0.71
Lag Trough Output Response (Quarters) 4-6 4 4 4
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Table A5 Stock Market onto High-Frequency Monetary Policy Shocks

Model
κ = 0 Overall Risk Neutral Risk Premium

FF Shock -7.41 -7.34 -1.60 -1.60 -5.81 -5.74
FF Shock x (FF Shock >0) -0.09 0.00 -0.09

κ = 0.0045
FF Shock -6.41 -6.35 -1.27 -1.26 -5.14 -5.09
FF Shock x (FF Shock >0) -0.07 -0.02 -0.06

κ = 0.0062
FF Shock -6.37 -6.31 -1.23 -1.22 -5.13 -5.08
FF Shock x (FF Shock >0) -0.07 -0.02 -0.06

F. Empirical robustness

F.1. Portfolio return regressions

In this Section, we confirm that the cross-sectional results are not specific to industry portfolios,
but instead look similar for beta-sorted portfolios, thereby isolating cyclicality from other industry
characteristics such as duration or financial constraints (Ottonello and Winberry (2020)).

Figure A2 shows the results for beta-sorted portfolios. Beta-sorted portfolios are constructed as
follows.

1. Construct a sample of common stocks traded on NYSE, AMEX, and NASDAQ. Obtain the monthly
return and market cap for each stock.

2. Estimate market beta for each stock i in month m using a 60-month rolling window. This is the
approach for Fama-French portfolios formed on market beta.

(a) For stock i in month m, obtain its monthly returns from month m− 59 to m.

(b) Run the time series regression retrfi,m′ = βm×mktrfi,m′+εi,m′ , using data from the previous
step.

(c) If there are at least 24 valid observations for the regression in the previous step, then let the

estimated β̂m be the beta of stock i in month m. Otherwise, beta is missing.

(d) At the end of each quarter q, sort stocks traded on NYSE into 5 portfolios by their beta in
quarter q, and use these NYSE beta breakpoints for all the stocks in our sample. This is the
approach for Fama-French portfolios formed on market beta.

3. On each FOMC date t (in quarter q), obtain the beta breakpoints at the end of quarter q−1. Then
compute the value-weighted return of each quintile portfolio on day t, where the weights are the
market cap on day t.

We compute the high-frequency returns for the market, industry portfolios, and beta-sorted portfolios
according to Online Appendix A of Nakamura and Steinsson (2018). For security n on day t:

(a) We find the last trade before 2:05pm on day t and define the associated price as the pre-price
ppret (n)

(b) We find the first trade within the window [2:35pm on day t; 12pm on day t + 1] and define
the associated price as the post-price ppostt (n)

(c) The high-frequency return of security n on day t is defined as (ppostt (n)/ppret (n)− 1)× 100

(d) If either ppret (n) or ppostt (n) is missing, then we set the high-frequency return to be missing.
If the high-frequency return is 0, then it means we have non-missingppret (n) and ppostt (n), and
ppostt (n) = ppret (n).
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Fig. A2 Beta-Sorted Portfolios
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Note: This figure is constructed in the same way as Figure 4 in the main paper, but instead of using industry portfolios it
uses five beta-sorted portfolios. 95% confidence intervals for the empirical scaled coefficient bj,1 are shown. Stocks are
sorted quarterly using betas estimated over a 60-month rolling window and NYSE breakpoints. The results are obtained
from a simulation of length 10000.

F.2. Robustness stock response by risk aversion

This Section shows robustness of our empirical finding that stock returns are more sensitive to
monetary policy shocks when risk aversion is high. Table A6 repeats the analysis of Table 6 in the main
paper without including the timingt control, and shows that the interaction FF x (RAt¿Median) remains
very similar in magnitude and statistically significant. Further, the coefficients increase monotonically
from small and statistically insignificant to large and statistically significant as we go from the lowest
beta industries to the highest beta industries.

Tables A7 and A8 show that the interaction is similarly negative and statistically significant when
we use a continuous VIX variable rather than a dummy, so our results are not due to splitting the sample
in a particular way. Because the VIX variable in Tables A7 and A8 is standardized to have mean zero
and a unit standard deviation, the magnitudes are not directly comparable to those in Table 6 in the
main paper.

38



Table A6 Stock Returns onto High-Frequency Monetary Policy Shocks by Risk Aversion - No Timing Control

Mkt Utils NoDur Hlth Enrgy Shops Telcm Manuf Other Durbl HiTec

Data - High-Frequency Regression
FF Shock -0.48 -0.99** -0.20 0.16 -0.22 -0.58 -0.41 -0.32 -0.75 0.08 -0.85

(0.47) (0.47) (0.48) (0.55) (0.37) (0.50) (0.55) (0.44) (0.64) (0.65) (0.71)

FF Shock × (RAt >Median) -4.37*** -1.20 -2.78** -3.20** -3.66** -3.57** -3.70** -4.27*** -5.50** -3.98*** -5.02***
(1.59) (1.27) (1.20) (1.45) (1.55) (1.47) (1.72) (1.51) (2.15) (1.50) (1.90)

FF Shock × (RAt >Med) -3.25** -0.18 -1.68 -2.26 -2.74* -2.43* -2.37 -3.15** -4.38** -2.74* -3.86**
(1.57) (1.17) (1.14) (1.51) (1.51) (1.46) (1.52) (1.43) (2.15) (1.43) (1.88)

Quarterly Beta
1 0.45 0.65 0.65 0.73 0.83 0.95 0.98 1.04 1.24 1.39

(0.00) (0.08) (0.06) (0.06) (0.09) (0.05) (0.07) (0.05) (0.05) (0.09) (0.07)

Note: This table is identical to Table 6 in the main paper, except that the empirical results do not control for the monetary policy timing variable. This table reports
regressions of the form rFOMC

j,t = bj,0 + bj,1∆FOMC it+ bj,2∆FOMC it(RAt > Median)+ bj,3(RAt > Median)+εj,t Here, rFOMC
j,t is the 30 minute industry or market return

around FOMC announcements computed from TAQ data. ∆FOMC it is the fed funds rate shock from the current month futures over the same time interval. In the data, we
use the VIX to proxy for high risk aversion RAt while in the model we use the negative surplus consumption ratio. The constant and the dummy coefficient are suppressed in
the table. Industries are sorted by their quarterly stock market beta from left to right, as in Table 5. The empirical sample consists of 202 scheduled FOMC announcements
from January 1994 until March 2019. Heteroskedasticity adjusted standard errors are reported in parentheses below the empirical estimates. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A7 regresses 30 minute returns on the aggregate stock market and industries onto the 30 minute
federal funds rate shock, and the 30 minute federal funds rate shock interacted with the VIX on the day
prior to the FOMC announcements, while controlling for timingt. VIX is standardized to have a unit
standard deviation. The regressions are analogous to Table 6 in the main paper, but rather than using
a VIX dummy we use the continuous VIX variable. Industries are sorted from low to high unconditional
quarterly betas. We see that interaction FF Shock × VIX enters negatively for the market, meaning
that the market declines more in response to a high-frequency monetary policy shock in periods when
the VIX is high. Going from left to right in the table shows that the interaction coefficient becomes more
negative for high-beta industries, such as high-tech, meaning that the state-dependence of the stock return
response to a monetary policy shock is stronger for more cyclical industries. Table A7 therefore confirms
that the empirical state-dependence of the stock return response across high- and low-risk aversion states
is robust to not using a dummy variable. Table A8 shows that results are similar or even larger and more
significant when we do not control for timing changes in the policy rate.
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Table A7 Empirical State-Dependence with Continuous VIX Variable

Mkt Utils NoDur Hlth Enrgy Shops Telcm Manuf Other Durbl HiTec

FF Shock -6.36*** -4.98*** -5.02*** -4.32*** -5.25*** -6.12*** -6.10*** -5.86*** -7.52*** -6.02*** -7.12***
(1.05) (0.82) (0.76) (0.96) (1.05) (1.08) (0.91) (0.93) (1.57) (1.04) (1.18)

FF Shock × VIX -1.10* 0.19 -0.74* -0.96* -1.01* -0.94* -1.39* -1.36** -1.13 -0.98* -1.46**
(0.57) (0.54) (0.44) (0.53) (0.56) (0.51) (0.80) (0.55) (0.76) (0.55) (0.66)

VIX -0.15*** -0.07 -0.11*** -0.10*** -0.16** -0.15*** -0.14** -0.13** -0.17** -0.16** -0.17***
(0.06) (0.05) (0.04) (0.04) (0.06) (0.05) (0.06) (0.05) (0.08) (0.07) (0.05)

Const. -0.06** -0.01 -0.06*** -0.05** -0.07** -0.08*** -0.09*** -0.07** -0.01 -0.07** -0.11***
(0.03) (0.03) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.06) (0.03) (0.03)

Nobs 202 202 202 202 202 202 202 202 202 202 202
R2 0.26 0.16 0.28 0.22 0.22 0.28 0.29 0.30 0.13 0.24 0.27

Note: This table shows robustness for the empirical results in Table 6. It reports regressions of the form rFOMC
j,t = bj,0 + bj,1∆FOMC it + bj,2∆FOMC it × V IXt−1 +

bj,3V IXt−1 + b4,jtimingt + εj,t Here, rFOMC
j,t is the 30 minute industry or market return around FOMC announcements from TAQ and ∆FOMC it is the fed funds

rate shock from current month futures over the same time interval. The coefficient on the monetary policy timing variable timingt is suppressed. This table uses
the VIX directly, whereas in the main paper we use a dummy indicating whether the VIX is above or below its full-sample median. VIX is standardized to have a
unit standard deviation. The empirical sample consists of 202 scheduled FOMC announcements from February 1994 until March 2019. Heteroskedasticity adjusted
standard errors are reported in parentheses below the empirical estimates. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A8 Empirical State-Dependence with Continuous VIX Variable - No Timing Control

Mkt Utils NoDur Hlth Enrgy Shops Telcm Manuf Other Durbl HiTec

FF Shock -2.68*** -1.67*** -1.55*** -1.37** -2.10*** -2.38*** -2.07*** -2.36*** -3.64*** -1.94*** -3.34***
(0.78) (0.64) (0.56) (0.69) (0.76) (0.72) (0.71) (0.70) (1.16) (0.73) (0.91)

FF Shock × VIX -1.68*** -0.33 -1.28*** -1.42*** -1.51** -1.52*** -2.02** -1.91*** -1.74** -1.63*** -2.05***
(0.61) (0.60) (0.49) (0.51) (0.61) (0.53) (0.91) (0.60) (0.79) (0.59) (0.67)

VIX -0.12** -0.05 -0.09** -0.08** -0.14** -0.13** -0.11* -0.10** -0.14* -0.13* -0.14***
(0.06) (0.05) (0.04) (0.04) (0.06) (0.05) (0.06) (0.05) (0.09) (0.07) (0.05)

Const. -0.05 0.00 -0.05** -0.04 -0.06** -0.07** -0.07** -0.05* 0.00 -0.06* -0.09**
(0.03) (0.03) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.06) (0.03) (0.03)

N 202 202 202 202 202 202 202 202 202 202 202
R2 0.17 0.05 0.13 0.12 0.15 0.16 0.16 0.19 0.09 0.13 0.19

Note: This table shows robustness for the empirical results in Table 6. It reports regressions of the form rFOMC
j,t = bj,0 + bj,1∆FOMC it + bj,2∆FOMC it × V IXt−1 +

bj,3V IXt−1 + εj,t Here, rFOMC
j,t is the 30 minute industry or market return around FOMC announcements from TAQ and ∆FOMC it is the fed funds rate shock over

the same time interval. This table uses the VIX directly, whereas in the main paper we use a dummy indicating whether the VIX is above or below its full-sample
median. VIX is standardized to have a unit standard deviation. The empirical sample consists of 202 scheduled FOMC announcements from February 1994 until
March 2019. Heteroskedasticity adjusted standard errors are reported in parentheses below the empirical estimates. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Tables A9, A10, and A11 analyze the ability of the dividend-price ratio to explain variation in
the stock return response to monetary policy shocks. While the dividend-price ratio is the most direct
measure of risk aversion within our model, it also comes with issues for the analysis that we run, leading
us to prefer the VIX for our main analysis. For this robustness exercise, we use the log dividend price
ratio minus a ten year moving average to account for the shift towards persistently higher stock prices
after the late 1990s, and split the sample into periods with above- and below-median dividend price
ratios. While the interaction between the fed funds shock and (dpt¿Median) enters negatively in Table
A9, as expected, this interaction is not statistically significant.

However, Table A10 shows that the interaction coefficients become larger in magnitude and significant
for some industry portfolios when we do not control for the timingt variable that captures shifts in the
timing of policy rate changes. One possibility why it might be better to not control for timingt in this
analysis could be if timingt is heteroskedastic in such a way that it is more volatile and correlated with
the fed funds shock when dpt is high. Such heteroskedasticity is not implausible, given that the Fed has
shifted towards forward guidance as a monetary policy tool after stock market crashes, such as the 2001
dotcom bust and 2008-2009.

Because simple de-trending may not appropriately adjust the dividend-price ratio, Table A11 also
analyzes the stock market response to monetary policy shocks by dividend-price ratio starting in 2002,
which is arguably after the persistent shift in stock prices. This table shows that once we exclude the
pre-2002 period, the interaction FF Shock x (dpt¿Med) becomes negative and statistically significant,
though still estimated with substantial noise.

Overall, it appears that our conclusions are robust to using the dividend-price ratios, at least once
the shift in the overall level of stock prices and potentially changing monetary policy instruments are
accounted for. However, we still prefer the VIX as our baseline measure, especially within the broader
interpretation of our model as capturing countercyclical risk aversion.
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Table A9 Stock Returns onto High-Frequency Monetary Policy Shocks by Dividend-Price Ratio

Mkt Utils NoDur Hlth Enrgy Shops Telcm Manuf Other Durbl HiTec

Data - High-Frequency Regression
FF Shock -5.62*** -4.13*** -4.19*** -3.67*** -3.07*** -5.28*** -5.56*** -5.05*** -7.21*** -4.58*** -6.56***

(1.30) (0.74) (0.92) (1.13) (0.98) (1.19) (1.22) (1.12) (2.19) (1.10) (1.51)

FF Shock × (dpt >Med) -1.21 -0.39 -0.97 -1.27 -3.21 -0.95 -1.09 -1.77 -0.97 -2.08 -0.82
(1.94) (1.53) (1.41) (1.76) (1.97) (1.79) (1.92) (1.78) (2.59) (1.74) (2.21)

(dpt >Med) -0.09 -0.01 0.01 -0.03 -0.04 -0.05 -0.01 -0.05 -0.29*** -0.08 -0.01
(0.06) (0.05) (0.05) (0.05) (0.06) (0.06) (0.06) (0.05) (0.11) (0.06) (0.07)

Const. -0.01 -0.00 -0.06** -0.03 -0.05* -0.05 -0.08** -0.04 0.14 -0.03 -0.09*
(0.04) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.03) (0.09) (0.03) (0.05)

N 202 202 202 202 202 202 202 202 202 202 202
R2 0.19 0.13 0.20 0.16 0.14 0.18 0.20 0.22 0.12 0.16 0.18

Note: This table reports regressions of the form rFOMC
j,t = bj,0 + bj,1∆FOMC it + bj,2∆FOMC it(RAt > Median) + bj,3(RAt > Median) + εj,t Here, rFOMC

j,t is the 30 minute

industry or market return around FOMC announcements computed from TAQ data. ∆FOMC it is the fed funds surprise implied by the current month fed funds futures over
the same time interval. In the data, we use the dividend price ratio minus a 10-year moving average to proxy for high risk aversion RAt while in the model we use the negative
surplus consumption ratio. The constant and the dummy coefficient are suppressed in the table. Industries are sorted by their quarterly stock market beta from left to right, as
in Table 5. The empirical sample consists of 202 scheduled FOMC announcements from January 1994 until March 2019. Heteroskedasticity adjusted standard errors are reported
in parentheses below the empirical estimates. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A10 Stock Returns onto High-Frequency Monetary Policy Shocks by Dividend-Price Ratio - No Timing Control

Mkt Utils NoDur Hlth Enrgy Shops Telcm Manuf Other Durbl HiTec

Data - High-Frequency Regression
FF Shock -1.86** -0.95** -0.76 -0.61 -0.45 -1.59** -1.32** -1.40** -2.92* -0.64 -2.72**

(0.80) (0.40) (0.55) (0.64) (0.38) (0.66) (0.61) (0.62) (1.55) (0.65) (1.05)

FF Shock × (dpt >Med) -2.66 -1.62 -2.30 -2.45 -4.22** -2.37 -2.73 -3.18 -2.62 -3.60* -2.30
(2.07) (1.61) (1.53) (1.82) (1.99) (1.88) (2.21) (1.96) (2.70) (1.87) (2.38)

(dpt >Med) -0.06 0.02 0.04 -0.00 -0.02 -0.02 0.03 -0.02 -0.26** -0.05 0.03
(0.06) (0.06) (0.05) (0.05) (0.06) (0.06) (0.06) (0.06) (0.11) (0.07) (0.07)

Const. -0.01 -0.00 -0.07** -0.03 -0.05* -0.05 -0.08** -0.04 0.14 -0.03 -0.10*
(0.04) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.03) (0.09) (0.04) (0.05)

N 202 202 202 202 202 202 202 202 202 202 202
R2 0.11 0.05 0.08 0.07 0.10 0.09 0.09 0.13 0.08 0.08 0.12

Note: This table is analogous to Table A9 but it does not control for the monetary policy timing variable.
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Table A11 Stock Returns onto High-Frequency Monetary Policy Shocks by Dividend-Price Ratio 2002-2019 Sample

Mkt Utils NoDur Hlth Enrgy Shops Telcm Manuf Other Durbl HiTec

Data - High-Frequency Regression
FF Shock 7.57 -3.78 4.51 6.73 -5.72 12.77* 7.97 5.09 7.80 12.07* 11.18

(5.92) (4.69) (4.95) (4.53) (6.13) (6.55) (5.71) (5.64) (6.49) (7.22) (7.06)

FF Shock × (dpt >Med) -14.33** -0.95 -9.42* -11.72** -1.12 -18.87*** -14.74** -12.05** -16.09** -18.98** -17.83**
(6.10) (4.81) (5.05) (4.72) (6.23) (6.69) (5.91) (5.81) (6.72) (7.31) (7.23)

(dpt >Med) -0.12* -0.04 -0.01 -0.08 -0.07 -0.11* -0.07 -0.10 -0.21*** -0.15** -0.13*
(0.06) (0.07) (0.06) (0.06) (0.08) (0.06) (0.07) (0.06) (0.08) (0.08) (0.07)

Const. (0.05) (0.06) (0.04) (0.04) (0.06) (0.04) (0.05) (0.05) (0.05) (0.05) (0.05)

N 138 138 138 138 138 138 138 138 138 138 138
R2 0.20 0.10 0.16 0.17 0.14 0.18 0.18 0.21 0.20 0.16 0.18

Note: This table is analogous to Table A9 but it uses a sample starting in January 2002.
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