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A Empirical Appendix

A.1 Currency names and codes

Table AI lists the country name, currency name, and the three-letter currency code for our sample
countries.

Table AI: Currency names and codes

Developed markets Emerging markets

Country Currency Code Country Currency Code

Australia Australian dollar AUD Brazil Brazilian real BRL

Canada Canadian dollar CAD Chile Chilean peso CLP

Denmark Danish krone DKK Colombia Colombian peso COP

Germany Euro EUR Czech Republic Czech koruna CZK

Japan Japanese yen JPY Hungary Hungarian forint HUF

New Zealand New Zealand dollar NZD Indonesia Indonesian rupiah IDR

Norway Norwegian krone NOK Israel Israeli shekel ILS

Sweden Swedish krona SEK Malaysia Malaysian ringgit MYR

Switzerland Swiss franc CHF Mexico Mexican peso MXN

United Kingdom British pound GBP Peru Peruvian nuevo sol PEN

United States US dollar USD Philippines Philippine peso PHP

Poland Polish zloty PLN

Singapore Singapore dollar SGD

South Africa South African rand ZAR

South Korea South Korean won KRW

Thailand Thai baht THB

Turkey Turkish lira TRY
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A.2 Comparing External Debt Sources

Figure A1: External LC Debt Share in Global Mutual Funds and US TIC, 2015

AUD

CAD

CHF

DKK

EUR

GBP

JPY
NOK NZD

SEK

BRL

CLP

COP

CZK

HUF

IDR

ILS

KRW

MXN

MYR

PEN

PHP

PLN

SGD
THB

TRY

ZAR

0
2

0
4

0
6

0
8

0
1

0
0

L
C

 S
h

a
re

 i
n

 E
x
te

rn
a

l 
D

e
b

t 
(M

N
S

)

0 20 40 60 80 100

LC Share in External Debt (TIC)

Correlation: 95%

Note: This figure plots the percentage of external government debt denominated in each country’s
local currency using data from global mutual funds in Maggiori et al. (2019) (MNS) and the US
external position in the Treasury International Capital (TIC ) data. MNS data uses data for the
entire European Monetary Union (EMU). TIC data uses Germany for the Euro area. All data are
for end of year 2015.
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A.3 Estimates of LC bond-stock betas by country

Figure A2 plots our LC bond-local stock beta, β(bondi, stocki), estimated from Eqn. (3) by country.
The 95 % confidence intervals are based on the bootstrap described in detail in Section A.3.1.
The betas are precisely estimated and most of them are statistically significantly different from
zero. Developed markets (shown in green) generally have negative bond-stock betas, and emerging
markets (shown in red) have higher bond-stock betas, with many countries having positive bond-
stock betas. Even within emerging markets, we document economically and statistically significant
cross-country heterogeneity in LC bond-stock betas.

Figure A2: Individual Country LC Bond-Stock Betas
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Note: This figure plots the baseline LC bond-stock beta estimated as in Eqn. (3) for each country. The
green dots denote point estimates for developed markets. The red dots denote point estimates for emerging
markets. The vertical bars denote 95% confidence interval based on bootstrap standard errors. The details
of the bootstrap are described in Section A.3.1.

Table AII reports regression estimates for the LC bond-local stock betas by country, β(bondi, stocki).
It shows the same point estimates as in Figure A2, together with Newey-West standard errors with
120-day lags and bootstrap standard errors.
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Table AII: Regression Estimates of Individual Country LC Bond-Stock Betas

LC Bond-Stock Beta Newey-West SE Bootstrap SE N R2

AUD -0.185*** (0.0327) (0.0365) 2,453 0.406

BRL 0.149** (0.0512) (0.0536) 2,044 0.117

CAD -0.0936*** (0.0218) (0.0254) 2,421 0.207

CHF -0.0757*** (0.0207) (0.0244) 2,421 0.185

CLP -0.0448 (0.0377) (0.0382) 2,189 0.025

COP 0.166*** (0.0411) (0.0434) 2,291 0.215

CZK 0.00405 (0.0154) (0.0193) 2,420 0.001

DKK -0.0581*** (0.0172) (0.0213) 2,395 0.108

EUR -0.107*** (0.0180) (0.0199) 2,484 0.302

GBP -0.120*** (0.0269) (0.0299) 2,455 0.175

HUF 0.218*** (0.0255) (0.0301) 2,393 0.387

IDR 0.292*** (0.0372) (0.0489) 2,291 0.340

ILS -0.0367 (0.0203) (0.0301) 1,701 0.033

JPY -0.0303*** (0.00624) (0.0072) 2,315 0.185

KRW -0.0612** (0.0217) (0.0247) 2,361 0.102

MXN 0.0601** (0.0234) (0.0276) 2,428 0.048

MYR 0.00862 (0.0269) (0.0292) 2,338 0.002

NOK -0.0745*** (0.00888) (0.0128) 2,422 0.268

NZD -0.0894** (0.0312) (0.0340) 2,427 0.080

PEN 0.0869*** (0.0192) (0.0192) 2,124 0.267

PHP 0.157** (0.0520) (0.0587) 2,289 0.138

PLN 0.00857 (0.0143) (0.0165) 2,402 0.002

SEK -0.101*** (0.0262) (0.0275) 2,423 0.220

SGD -0.0390* (0.0155) (0.0209) 2,423 0.071

THB -0.0696** (0.0285) (0.0344) 2,283 0.088

TRY 0.316*** (0.0676) (0.0694) 2,248 0.296

USD -0.134*** (0.0207) (0.0344) 2,427 0.269

ZAR -0.0478 (0.0345) (0.0428) 2,394 0.021

Note: This table shows the regression estimates of the LC bond-local stock beta, β(bondi, stocki), based
on Eqn. (3) by country. The regressions are estimated using daily observations on overlapping one-quarter
holding returns from 2005 to 2014. Newey-West standard errors are used with 120-day lags to adjust for
overlapping holding periods of returns. Bootstrap standard errors are computed as the standard deviation
of bond-stock betas estimated on bootstrapped data, β̂boot (bondi, stocki) , where the standard deviation
is taken across 500 independent bootstraps. The bootstrap procedure adjusts for serial correlation and
heteroskedasticity in bond and stock returns and is described in detail in Appendix A.3.1. Statistical
significance is based on the bootstrap standard errors, with the significance level indicated by *** p<0.01,
** p<0.05, * p<0.1.

A.3.1 Details: Bootstrap Standard Errors

We now give the implementation details for the bootstrap standard errors shown in Figure A2 and
Table AII. We generate bootstrapped bond and stock returns while accounting for serial correlation
and heteroskedasticity in bond and stock returns. We use a moving block bootstrap, which Maddala
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(2001) and Lahiri (1999) argue has superior properties to account for time series correlation. Let N
be the number of countries and T be the length of the time series. We define T − 120 overlapping
blocks of length 120 days, where we use the same blocks for both bond returns xrLCi,n,t and stock
returns xrmi,t and we use the same blocks for all countries. Figure A3, Panel (A) illustrates how we
define overlapping blocks on the actual data.

Figure A3: Bootstrap Bond and Stock Returns

(A) Defining Overlapping Blocks on Original Data

(B) Defining Bootstrap Bond and Stock Returns

Note: This figure illustrates the moving block bootstrap to generate bootstrapped LC bond and local stock log excess returns
(Maddala (2001)). xrLCi,n,t denotes the log excess return over the 91 calendar day period ending on day t for the country i LC
bond with remaining time to maturity n. xrmi,t denotes the log excess return over the 91 calendar day period ending on day t on
the local equity benchmark in excess of a 3-month T-bill. rand1, rand2, ... , randK are iid random variables drawn uniformly
from the integers between 1 and T − 120. We then define bootstrap returns as the sequence of block rand1, followed by block
rand2,... up to block randK.

Define K = bT/120c, such that a combination of K blocks will generate a bootstrap sample
of length K × 120 ≈ T . Because T is not generally a multiple of 120, we round K down to be
conservative. We then generate bootstrap samples xrLC,booti,n,t and xrm,booti,t by randomly drawing
K blocks and concatenating them. Formally, we draw iid random variables rand1, rand2, ... ,
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randK uniformly from the integers between 1 and T − 120 and define the bootstrap returns as
the sequence of blocks rand1, rand2, ...,randK. Figure A3, Panel (B) illustrates the construction
of the bootstrapped bond and stock returns. Because we use the same blocks across all countries,
the bootstrap sample preserves the correlation of bond and stock returns across countries. We
choose a block length of 120 trading days as a trade-off between capturing the serial correlation of
overlapping returns (which are defined using 91 calendar days) and having a sufficient number of
blocks to generate plausible variation across the bootstrapped samples.

Having generated a bootstrap sample, we follow the same estimation procedure as in the actual
data. We re-estimate Eqn. (3) country-by-country on the bootstrapped data:

xrLC,booti,n,t = ai + βboot (bondi, stocki)× xrm,booti,t + εbooti,t . (A1)

Figure A2 and Table AII report the standard deviation of β̂boot (bondi, stocki) across 500 inde-
pendent bootstrap samples.

A.4 Robustness Checks for the Main Empirical Results

A.4.1 Monte-Carlo Standard Errors

We now show that our benchmark regression in Table II column (1) remains robustly for a range of
different distributional assumptions for the residuals. Because we only have 28 countries, asymptotic
standard errors are likely to be inappropriate in our setting. We therefore explore a range of different
distributional assumptions and how they affect standard errors in Monte Carlo simulations. We
explore the implications of different assumptions for the distribution of residuals in a series of
Monte Carlo simulations, including normal and wild Bootstrap distributions. The results from that
analysis are collected in Appendix Table AIII. This table starts by showing asymptotic standard
errors, with and without a Huber-White heteroskedasticity adjustment, in rows (1) and (2) for
comparison. Next, row (3) reports the standard error from a simple Monte Carlo simulation that
assumes that residuals are normally distributed with residuals for EM and DM countries drawn
from the same distribution. Rows (4) through (9) gradually relax these restrictive assumptions on
the distribution of residuals, allowing EM and DM residuals to be drawn from separate distributions
and allowing for non-zero correlations between EM and DM residuals. Row (4) allows for separate
standard deviations for the EM and DM residuals. Rows (5) through (9) drop the assumption
that residuals are uncorrelated across all country pairs. In rows (5) through (9), Monte Carlo
EM residuals are drawn from a multivariate normal with correlation listed in the fourth column.
Monte Carlo DM residuals are similarly drawn from a multivariate normal with correlation listed
in the fourth column. The EM and DM distributions are independent of each other. Rows (10)
replaces the assumption of normally distributed residuals and instead assumes that residuals are
drawn from the empirical distribution. Rows (11) and (12) report standard errors for variants
of the bootstrap distribution, assuming that residuals for EM and DM countries are drawn from
separate distributions (row (11)) and using a wild bootstrap (row (12)). Even though the standard
errors vary across the various specifications, our main finding again remains highly statistically
significant.

The details for the wild bootstrap procedure in row (11) are as follows. We generate boot-
strapped LC bond-stock betas according to a wild bootstrap that accounts for heteroskedasticity
(Davison and Hinkley (1997)). Let b0 and b1 denote the point estimates from regressing LC bond-
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stock betas onto LC debt shares in actual data:

β (bondi, stocki) = b0 + b1s
TOT
i + εi, (A2)

that is b0 and b1 are the estimated constant and coefficient shown in Table II, column (1). We use
εi to denote the residual for country i estimated on actual data. The bootstrapped LC bond-stock
beta β (bondi, stocki)

boot is then defined as:

β (bondi, stocki)
boot = b0 + b1s

TOT
i +Xiεi, (A3)

where X1, X2,..., XN are random variables that we draw independently from a standard normal
distribution with with mean zero and variance one. The conditional mean of β (bondi, stocki)

boot

is therefore b0 + b1βs
TOT
i as in a standard parametric bootstrap and the conditional variance

of the bootstrap residual is V (Xiεi) = ε2
i . The wild bootstrap preserves the volatility of the

residual and flexibly addresses heteroskedasticity in residuals, similar to situations when Huber-
White heteroskedasticity-robust standard errors would be used.
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A.4.2 Long-Term Debt

The cross-sectional relationship between LC bond-stock betas and LC debt shares is robust to
measuring the LC debt share only in long-term debt, as shown in Figure A4. We obtain face
values and issuance dates for all historical individual sovereign bond issuances from Bloomberg for
14 emerging markets and estimate the long-term LC debt share as the outstanding amount of LC
debt with five or more years remaining to maturity relative to all outstanding debt with five or
more years remaining to maturity.

Figure A4: LC Debt Share in Long-Term Debt versus Bond-Stock Beta
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Note: This figure plots the LC bond-stock beta on the y-axis and the share of LC debt in all
outstanding long-term debt on the x-axis. Long-term debt is defined as having a remaining time to
maturity of five or more years. The share of LC debt in long-term debt is estimated from individual
bond issuance data from Bloomberg .

A.4.3 Excluding the Financial Crisis

One important period in the middle of our sample is the financial crisis of 2008—2009. While
this period marked an important recession for the US and many other countries, we show in this
section that our main empirical results are not driven by the financial crisis. Figure A5 shows our
baseline LC bond-stock beta on the y-axis against a LC bond-stock beta excluding the financial
crisis period on the x-axis. We see that the bond-stock betas are extremely similar when excluding
the financial crisis, indicating that our key bond cyclicality measure is not driven by a small number
of observations. Figure A6 shows that our main stylized fact in Figure 1 remains unchanged if we
exclude the crisis period in our construction of LC bond betas.
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Figure A5: Local Currency Bond Betas Excluding 2008—2009
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Note: This figure shows LC bond-stock betas excluding the period 2008–2009 on the x-axis and
LC bond-stock betas for the full sample (including 2008—2009) on the y-axis.

Figure A6: Local Currency Debt Shares and Bond Betas Excluding 2008—2009
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Note: This figure differs from Figure 1 only in that it excludes 2008—2009 from the computation
of LC bond betas on the y-axis.

A.4.4 Adjusting for FX hedging errors

In Section A, we calculated the LC bond excess return over the local T-bill rate in local currency
units. We discussed that from the dollar investor’s perspective, these excess returns approximately
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hedge the LC fluctuation against the US dollar for the holding period between quarter t and t+ 1.
In this section, we re-calculate the bond-stock beta after adjusting for these FX hedging errors for
the USD investor.

In particular, suppose that the USD investor invests $1 in the LC bond at t and funds the
position by shorting $1 of the LC T-bill. At t+ 1, the gross USD return on the LC bond is

PLCi,n−1,t+1

PLCi,n,t

Ei,t+1

Ei,t
= exp[τi,n,ty

LC
i,n,t − (τi,n,t − 1)yLCi,n−1,t+1]

Ei,t+1

Ei,t
,

where PLCi,n,t denotes the price of the n-quarter LC bond at time t in country i, and Ei,t denotes
the LC exchange rate defined as USD per LC units, so an increase in Ei,t corresponds to a LC
appreciation against the USD. Recall that τi,n,t is equal to 5 years. The USD cost of shorting the
LC T-bill from time t to time t+ 1 is:

1

PLCi,1,t

Ei,t+1

Ei,t
= exp(−yLCi,1,t/4)

Ei,t+1

Ei,t
.

So the exact USD excess return of going long the LC bond and shorting the LC T-bill becomes:

x̃rLCi,n,t+1 =
PLCi,n−1,t+1

PLCi,n,t

Ei,t+1

Ei,t
− 1

PLCi,1,t

Ei,t+1

Ei,t
=
Ei,t+1

Ei,t
[
exp[τi,n,ty

LC
i,n,t − (τi,n,t − 1)yLCi,n−1,t+1]− exp(−yLCi,1,t/4)

]
.

Similarly, for a USD investor, the USD excess return of going long in the LC equity and shorting
the LC T-bill is:

x̃rmi,t+1 =
Ei,t+1

Ei,t
[Pmt+1/P

m
t − exp(−yLCi,1,t/4)].

We estimate the bond-stock betas adjusted for FX hedging errors by running the regression:

x̃rLCi,n,t = ai + β̃(bondi, stocki)× x̃rmi,t + εi,t.

Figure A7 shows that adjusting these FX hedging errors has no effect on the estimated bond-
stock betas. The correlation between the bond-stock beta in local currency units (y-axis) and the
bond-stock beta after adjusting for the FX hedging errors (x-axis) is 99.8%.
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Figure A7: LC Bond-Stock Beta Adjusting for FX Hedging Errors
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Note: On the horizontal axis, we plot the LC bond-stock beta using the bond and stock dollar
excess returns after adjusting FX hedging errors, as described in Section A.4.4. On the vertical
axis, we plot our baseline LC bond-stock beta in local currency units without adjusting for FX
hedging errors.

A.4.5 Larger sample using the inflation-GDP beta

Our main sample in the paper is constrained by the availability of long-term LC bond yields to
estimate bond-stock betas. We can extend our sample to over 100 countries by measuring the
realized inflation-GDP beta. To obtain standardized data across as many countries as possible, we
use the inflation and GDP data from the World Bank World Development Indicator (WDI), which
are available at the annual frequency. In order to obtain more precise estimates, we use a longer
sample from 1980 to 2017. We require at least 20 observations for a country to be included in the
sample, which leaves us with 107 sample countries.

Similar to the realized inflation beta with respect to industrial production as estimated by Eqn.
(5), we can estimate the realized inflation beta with respect to GDP by running the following
regression.

∆πi,t = ai + β(πi, GDPi)∆GDPi,t + εt, (A4)

where ∆πi,t is the yearly change in the year-over-year inflation rate, and ∆GDPi,t is the annual
change in the GDP growth rate. The coefficient β(πi, GDPi) measures the realized inflation cycli-
cality with respect to GDP for country i. Before estimating the inflation-output relation for each
country, we winsorize the top and bottom 1 % of the inflation rate and the GDP growth rate across
countries to remove extreme outliers. Having estimated inflation-output betas for each country, we
do not do any further winsorization.

Figure A8 is a binscatter plot showing a positive relationship between the the realized inflation-
GDP beta and LC debt share in external debt based on the TIC data. Regression results are
reported in Table AIV. We can see that the coefficient on the realized inflation-GDP is positive
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and significant. These findings support our main analysis in Table 2, because if inflation drives
down the value of LC bonds we would expect realized inflation-output betas to be inversely related
with LC bond-stock betas.

Figure A8: Binscatter Plot of Realized Inflation-GDP Beta vs. LC Debt Share
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Note: On the vertical axis, we plot the realized inflation-GDP beta. On the horizontal axis, we
plot the share of LC debt in total external debt in %, measured by TIC . The binscatter is plotted
with 20 bins.
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Table AIV: Realized Inflation-GDP Betas and LC Debt Shares in External Debt

(1) (2)

Realized Inflation-GDP Beta β(πi, GDPi) β(πi, GDPi)

sTIC 0.66*** 0.60***

(0.19) (0.22)

log(GDP) 0.01

(0.06)

FX Regime -0.00

(0.00)

Commodity Share -0.33***

(0.10)

Constant -0.76*** 0.01

(0.14) (0.55)

Observations 107 107

R-squared 0.08 0.20

Note: This table shows the regression results of the realized inflation-GDP beta on the LC debt share in
external debt based on TIC . Column (1) shows the univariate specification without controls. Column (2)
shows the specification with controls. Standard errors used in all regressions are the OLS standard errors.
Significance levels indicated by *** p<0.01, ** p<0.05, * p<0.1.

A.4.6 Time-varying betas and LC debt shares

We next show that our results are stable across different time periods. To start, we show that
individual countries’ bond-stock betas are stable over time. We estimate time-varying LC bond-
stock betas, βt(bondi, stocki), using five-year rolling windows between t − 5 and t. Panel (A) of
Figure A9 shows the average bond-stock beta for developed and emerging markets. The average
beta for developed countries fluctuated between −0.15 and 0, and the average beta for emerging
market fluctuated between 0 and 0.1. Panel (B) of Figure A9 plots the cross-country rankings of
the bond-stock betas between 2008 and 2014. We can see that the cross-sectional ranking is very
persistent. The average pairwise rank correlation between 2008 and 2014 is 92%.

We next run the cross-sectional regressions of βt(bondi, stocki) on the LC debt share at time t
for every year in our sample. The regression results are shown in Table AV. The coefficient on the
LC debt share is negative and statistically significant for all sample years.
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Figure A9: Time variations in the bond-stock beta
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and emerging markets (EM). The LC bond-stock beta at time t is calculated using a five-year rolling
window between t− 5 and t. Panel (B) plots the cross-country ranking of the five-year rolling LC
bond-stock betas over time, with each color indicating a sample country.
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A.5 LC Bond Return Comovement with US Stock Returns

We now show empirically that the LC bonds with the best hedging value for the domestic govern-
ment are risky for international lenders. In this analysis, we proxy for domestic agents’ marginal
utility of consumption with the local log excess stock return and for international lenders’ SDF
with the US log excess stock return. We decompose the local log excess stock return into a global
and an idiosyncratic component according to:

xrmi,t = ai + β(stocki, stockUS)× xrmUS,t + xridioi,t . (A5)

We define the systematic global component of local stock returns as the fitted value of Eqn.
(A5):

xrGi,t = β(stocki, stockUS)× xrmUS,t.

It is conceivable that LC bond returns co-move with domestic stock returns only through the
idiosyncratic component, xridioi,t , that is orthogonal to US stock returns. In this case, LC bonds
would have zero covariance with US stock returns and present no systematic risk to international
lenders, and our main channel would not be operative.

To alleviate this concern, we show in two ways that the LC bonds with the best hedging benefit
for the domestic borrower are indeed risky for international lenders. First, we directly estimate the
beta of LC bond returns with respect to US stock returns from a regression:

xrLCi,n,t = ai + β(bondi, stockUS)× xrmUS,t + εi,t. (A6)

Panel (A) of Figure A10 shows that β(bondi, stockUS) is highly correlated with our baseline measure
of bonds’ hedging value for the domestic borrower, β(bondi, stocki), estimated in Eqn. (3). The
cross-country correlation of these two different bond betas equals 89%, clearly supporting a link
between the domestic borrower’s hedging value and international lenders’ risk of holding LC bonds.

Second, we estimate LC bond excess return loadings on the systematic global component of
domestic stock returns using the regression:

xrLCi,n,t = ai + β(bondi, stock
G
i,US)× xrGi,t + εi,t. (A7)

Panel (B) of Figure A10 shows that β(bondi, stock
G
i,US) is 89% correlated with our baseline measure

of bonds’ hedging value for the domestic borrower β(bondi, stocki). In other words, LC bond returns
co-move with the global component of local LC stock returns.
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Figure A10: Local and Global Risks of LC Bonds
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(B) Beta onto Global Component of Local Stock Returns
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Note: Panel (A) plots on the y-axis the regression beta of LC bond excess returns on US S&P stock excess
returns, β(bondi, stockUS), estimated from Eqn. (A6). Panel (B) plots on the y-axis the regression beta of LC
bond excess returns on the global component of local LC bond returns, β(bondi, stock

G
i,US), estimated from

Eqn. (A7). Our baseline one-factor LC bond-stock beta with respect to the local stock market, estimated
from Eqn. (3), is shown on the x-axis in both panels. The bivariate correlation across countries is shown in
the figure title.
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A.6 Testing the CAPM

A.6.1 GRS Test of the CAPM

The paper treats stock market betas as proxies for expected excess returns. We now estimate a
standard Gibbons et al. (1989) (GRS) test for the CAPM, with the US stock market as a proxy
for total wealth.

We start by sorting our countries into five equal-sized portfolios, sorted by their LC bond betas
with respect to the US stock market. We obtain quarterly bond excess returns (not overlapping)
for these five portfolios. Due to our short sample period, it is unsurprising that average excess
returns are noisy.

We test the CAPM with the GRS statistic, which Campbell (2017) shows can be written as:

GRS =
T −N − 1

N

(SharpeLC,tangency)2 − (SharpemUS)2

1 + (SharpemUS)2
. (A8)

Here, SharpeLC,tangency is the Sharpe ratio of the tangency portfolio of the LC bond portfolios,
SharpemUS is the Sharpe ratio of the US equity market, T = 42 is the number of quarterly returns,
and N = 5 is the number of portfolios. The GRS statistic, hence, increases in the distance between
the Sharpe ratios for the tangency portfolio and the US equity market.

We estimate the tangency portfolio Sharpe ratio from the portfolio returns as in Campbell
(2017) Chapter 2.2.3. This gives a tangency Sharpe ratio of SharpeLC,tangency = 0.52, compared
to a US equity market Sharpe ratio of SharpemUS = 0.17, over our sample period 2004 to 2015. The
Sharpe ratio for the LC bond tangency portfolio hence exceeds the equity Sharpe ratio over our
short sample period. However, the tangency Sharpe ratio is very close to the US equity Sharpe
ratio of 0.56 reported in Campbell (2003) for a longer sample that is conventionally used to obtain
a more precise estimate of average US equity excess returns. The proximity between the tangency
Sharpe ratio and the US equity Sharpe ratio from this longer sample is an intuitive indication
that the difference between tangency and US equity Sharpe ratios over the shorter sample is not
statistically significantly different.

Substituting the values for SharpeLC,tangency, SharpemUS , T , and N into (A8) gives a value for
the GRS statistic of GRS = 1.72. Comparing this value to the critical values of a FN,T−N−1 distri-
bution gives a p-value of 0.16, showing formally that we cannot reject CAPM at any conventional
significance level.

A.6.2 GMM Risk Premium Estimation

We next make use of the fact that our assets of interest are bonds and that we can use quoted bond
yields to construct ex ante measures of LC bond risk premia. Ex ante bond risk premia may be
more precisely measured than the ex post average returns over a limited sample used for the GRS
test. We find that ex ante LC bond risk premia have a statistically and quantitatively significant
relationship with US stock market betas across countries. This estimation is similar to the GRS test
in Section A.6.1, because we seek to estimate whether investors require a higher risk premium for
LC bonds that comove more with the US stock market. Further, we want to understand whether
this price of risk is statistically distinguishable from the average US equity risk premium.

A concrete example makes clear the advantage of ex ante risk premia measures based on bond
yields, whereas realized bond returns are noisy measures of ex ante expected risk premia over our
short sample. For instance, the US had extremely low government bond yields throughout our
sample, indicating that investors required low risk premia for holding US Treasuries. However,
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US Treasury yields dropped even lower during our sample and, in particular, during the financial
crisis, an event that would have been very hard to predict ex ante. As a result, looking at US excess
returns, it would appear as if the US had a high risk premium, whereas clearly markets price a
very low risk premium into US Treasuries.

We estimate a regression of ex ante average expected risk premia onto the beta of LC bond
returns with respect to the US stock market, while accounting for the fact that the betas on the
right-hand side of this regression are not known but instead must be estimated.

For comparison and to set the stage, we first estimate this relationship in two steps without
accounting for generated regressors. As a first-step, we estimate country-by-country regressions:

xrLCi,n,t = αi + βixr
m
US,t + εi,t, (A9)

using daily data on overlapping 1-quarter holding returns. Because we use daily overlapping
returns, the average number of return observations per country is high at 2513. For comparison,
the maximum number of return observations is 2608, so our data is close to a balanced panel. Let
RP i,n denote the average ex ante risk premium estimated for country i. In a second step, we then
estimate the regression:

RP i,n = µ+ κβi + ui. (A10)

The coefficient, κ, estimates the cost of exposure to the US stock market and is the coefficient
of interest.

To estimate αi, βi, µ, and κ in a single step while accounting for estimation error in the first
stage, we define the following Generalized Method of Moments (GMM) moments, which we expect
to have a population mean of zero:

gi,t =


RP i,n − µ− κβi for 1 ≤ i ≤ N(
RP i,n − µ− κβi

)
βi for N + 1 ≤ i ≤ 2N

xrLCt − αi − βixrmUS,t for 2N + 1 ≤ i ≤ 3N(
xrLCi,t − αi − βixrmUS,t

)
xrmUS,t for 3N + 1 ≤ i ≤ 4N

(A11)

Here, N denotes the number of countries in the sample and the parameter vector to be estimated
is:

b = [µ, κ,α,β]′ ,

α = [α1, α2, ..., αN ],

β = [β1, β2, ..., βN ].

The first 2N moment conditions in (A11) are for the cross-sectional regression in the second stage.
Moment conditions 2N + 1 through 4N are for the first-stage regressions. In sample, the 4N
moments (A11) cannot all simultaneously be set to zero, because we only have 2N + 2 parameters.
The GMM estimator b̂ is defined by setting:

A× 1

T

T∑
t=1

gt

(
b̂
)

= 0, (A12)

where A is a weighting matrix of size (2N + 2)× 4N that has full rank. It is a standard result for
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GMM that the estimated parameter vector b̂ has asymptotic distribution

b̂ ∼ N (b0,V ) (A13)

V = T−1 (AD)−1ASA′ (AD)−1′ , (A14)

where b0 is the true underlying parameter value, D = E
[
∂g
∂b′

]
is the sample average of the derivative

of g with respect to the parameter vector, b, and S is the spectral density matrix of gt at frequency
zero.

We implement GMM with weighting matrix A = [(2N + 2)× 4N ] that ensures that the GMM
estimates for µ and κ agree with the point estimates from the two-step procedure. This requirement
pins down the weighting matrix:

A =

 11×N 01×N 01×2N

01×N 11×N 01×2N

02N×N 02N×N I2N

 . (A15)

Here 0M×P and 1M×P define block matrices of all zeros and ones with size [M × P ], respectively.
We use I2N to denote the identity matrix of size 2N . For our application, we use the consistent
estimator for D:

D̂ =


−1N×1 −β 0N×N −κIN
−β −β2 0N×N −2κ× diag(β)

0N×1 0N×1 −IN −IN
∑T

t=1 xr
m
US,tT

−1

0N×1 0N×1 −IN
∑T

t=1 xr
m
US,tT

−1 −IN
∑T

t=1

(
xrmUS,t

)2
T−1

 , (A16)

where diag(β) denotes the matrix with the elements of β along the diagonal. We estimate the upper
left [2N × 2N ] submatrix of S from the cross-section of countries, with the assumption that (βi, ui)
are independent but not necessarily identically distributed. We also assume that gi,t, 1 ≤ i ≤ 2N
are independent of gj,t, 2N < j < 4N , so we can set the upper-right 2N × 2N and the lower-left
2N × 2N block matrices of the spectral density matrix, S, to zero. We cannot estimate the upper-
right 2N×2N and the lower-left 2N×2N block matrices of the spectral density matrix, S, because
RP i,n is constant over time for each country. The spectral density for moments 2N + 1 through
4N is estimated from the time series with a Newey-West kernel with m lags to account for serial
correlation and overlapping return observations:

Ŝ =

 IN ŝ1 IN ŝ12 0N×2N

IN ŝ12 IN ŝ2 0N×2N

02N×N 02N×N T−1
∑T

t=1

(
g̃tg̃
′
t +
∑m

i=1

(
1− i

m+1

) [
g̃tg̃
′
t−i + g̃t+ig̃t

′])
 . (A17)
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Here,

ŝ1 =
1

N − 2

T∑
t=1

N∑
i=1

g2
i,t, (A18)

ŝ2 =
1

N − 2

T∑
t=1

2N∑
i=N+1

g2
i,t, (A19)

ŝ12 =
1

N − 2

T∑
t=1

N∑
i=1

gi,tgi+N,t, (A20)

and g̃t refers to the vector containing elements g2N+1,t through g4N,t. We choose a lag length of
m = 120 days to account for the length of overlapping observations of approximately 60 trading
days. A lag length of m = 120 days is sufficiently small relative to our overall sample length of
2608 trading days that standard asymptotic standard errors apply.

We then compute the GMM standard errors for µ and κ as follows:

SE(µ̂) =
√
V (1, 1), (A21)

SE(κ̂) =
√
V (2, 2). (A22)

Table AVI column (1) starts by reporting the estimated regression Eqn. (A10) without ac-
counting for generated regressors. It reports non-robust OLS standard errors. We note that the
bond-US stock beta enters with a strongly positive coefficient that is also statistically significant.
The results suggest that the price of US stock market risk is 8.96%, that isan asset with a unit beta
with respect to the US stock market has a risk premium of 8.96%. This number is very close to
and not statistically significantly different from the equity premium of 8.1% reported in Campbell
(2003). Column (2) in Table AVI reports results from the GMM procedure, which accounts for
generated regressors. The point estimates are identical to column (1) and the standard errors are
only slightly larger without affecting statistical significance, as one would expect if the vector of
bond betas, β, is precisely estimated.

Table AVI: GMM: LC Bond Risk Premia onto LC Bond-US Stock Betas

(1) (2)

LC Bond Risk Premium OLS GMM

βi 8.96*** 8.96***

(2.54) (3.27)

Constant 2.81*** 2.81***

(0.29) (0.38)

Observations 28 28

Note: This table estimates the regression (A10), where LC bond-US stock return betas are esti-
mated via (A9). The specification in column (1) does not account for generated regressors and
reports standard OLS standard errors. Column (2) accounts for generated regressors by using the
GMM procedure described in Appendix A.6.2. Significance levels are indicated by *** p<0.01, **
p<0.05, * p<0.1.
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B Model Appendix

The Model Appendix is structured as follows:

• Appendix B.1 microfounds real exchange rate shocks.

• Appendix B.2 describes how we model stock returns as a factor loading onto output surprises
in the calibrated model.

• Appendix B.3 shows that under the assumptions of lump-sum taxes and a representative
domestic consumer, inflating away domestically-held LC debt has no effect on domestic real
consumption. Inflating away LC debt is only an aggregate transfer of resources to domestic
consumers when the debt is owned by international lenders. This insight allows us to focus
on externally-held debt throughout the main paper.

• Appendix B.4 derives the first-order conditions.

• Appendix B.5 proves Proposition 1.

• Appendix B.6 describes the numerical solution.

• Appendix B.7 shows that the quantitative results are robust to reasonable variation in pa-
rameter values and in particular to allowing separate exchange rate processes for emerging
and developed markets.

B.1 Microfounding the Real Exchange Rate

This section describes the goods and preferences microfounding the real exchange rate.

B.1.1 International Consumers

Following Gabaix and Maggiori (2015), we assume that international consumers consume a con-
sumption basket:

C∗t = (A∗t )
Et (O∗t )

1−Et , (B1)

where Et is a non-negative, potentially stochastic preference parameter.35 A∗t denotes the number of
apples and O∗t the number of oranges consumed by international consumers in periods t = 1, 2. We
normalize the preference shock in period 1 to one. The period 2 preference shock is log-normally
distributed according to Eqns. (25) and (26). To summarize, the distribution of the preference
shock is:

E1 = 1,

E2 = exp

(
ε2 −

1

2
σ2
ε

)
, (B2)

ε2 = λε,x
∗
x∗2 + e2, (B3)

35Pavlova and Rigobon (2007) also consider a similar foundation for real exchange rate fluctuations based

on preference shocks.
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where e2 is distributed according to:

e2 ∼ N(0, σ2
e),

independently of x2 and x∗2. International consumers’ welfare function is given by:

U∗ = E
2∑
t=1

(δ∗)t
(C∗t )1−γ∗

1− γ∗
. (B4)

We assume that the international economy is endowed with an equal amount of apples and
oranges in each period. Furthermore, the international economy’s endowment of apples and oranges
equals A∗1 = O∗1 = X∗1 = 1 in period 1 and it equals A∗2 = O∗2 = X∗2 in period 2, where X∗2 follows
the distribution described in the main paper. Since the domestic economy is assumed to be small,
the effect of domestic bond payoffs on international consumers’ consumption is negligible. The
international consumers’ consumption bundle then equals:

C∗1 = A∗1 = O∗1 = 1,

C∗2 = A∗2 = O∗2 = X∗2 .

B.1.2 Domestic Economy

Domestic consumers have preferences over the real domestic consumption bundle and domestic log
inflation:

U (C2, π2) =
C1−γ

2

1− γ
− α

2
π2

2. (B5)

The domestic consumption bundle consists entirely of apples:

C2 = A2. (B6)

The amount of apples consumed in Eqn. (B6) is endogenous, and depends on the exogenous
endowment net of real debt repayments, as specified in Eqn. (14) We define the consumption-
weighted real exchange rate as the price that international consumers are willing to pay for apples,
where the numeraire is one unit of the international consumers’ consumption bundle. With (B1),
(B4), (B5), and (B6), the real exchange rate equals:

dU∗

dA∗t
dU∗

dC∗t

= Et, (B7)

showing that the real exchange rate indeed follows the process described in the main paper.

B.2 Bond and Stock Returns

In order to compare bond-stock betas in the model and in the data, we need to model bond and
stock returns. Model log excess LC bond return innovations equal the revision to log bond prices
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from period 1 to period 2 :

xrLCi,2 − ExrLCi,2 = − (πi,2 − Eπi,2) , (B8)

where i = EM or i = DM . Model LC bond excess returns are currency hedged, analogously to
the empirical analysis in Section I.

We model stocks simply as an asset class whose log dividends are proportional to log domestic
output. In order to focus on the role of government bonds as a tool to hedge domestic consumption,
we assume that stocks cannot be traded across borders. Specifically, we model log domestic equity
return innovations as proportional to log domestic output:

xrmi,2 − Exrmi,2 = λm,x (xi,2 − Exi,2) . (B9)

In our calibration, we set the coefficient λm,x to be consistent with the data. Regressing quarterly
local equity excess returns onto log domestic output gives a coefficient of 4, averaged across EMs
and DMs, as listed in Table V. The estimated coefficient for EMs is not statistically different from
the one for DMs at the 95% level, so we use the average in the calibration for both EMs and DMs.

With Eqns. (B8) and (B9) we obtain a simple relationship between model bond-stock betas
and inflation-output betas:

βmodel (bondi, stocki) = − 1

λm,x
βmodel (πi, xi) , (B10)

βmodel (πi, xi) =
Cov(πi,2, xi,2)

σ2
i,x

. (B11)

The relation in Eqn. (B10) captures the intuition that bond-stock betas have the opposite sign
from inflation-output betas and are compressed towards zero, because stocks are more volatile than
output.

B.3 Domestic Debt Extension

We now present an extension of the model with domestically-held LC debt. That is, the government
can borrow from its own domestic consumers with LC debt in addition to borrowing from interna-
tional lenders. We show that under the assumptions that the government has access to lump-sum
taxes and a representative consumer, inflating away domestically-held LC debt leaves domestic real
consumption unchanged. Inflating away LC debt only generates an aggregate transfer of resources
to domestic consumers if that debt is held by international lenders. This observation motivates our
focus on internationally-held debt throughout the paper.

We assume that the government borrows face value DLC,dom of LC debt from domestic con-
sumers and face value DLC of LC from international lenders at prices QLC,dom and QLC . Note
that we allow for potentially different bond prices paid by domestic consumers and international
lenders. We continue to assume that the government needs to raise external financing D̄/R∗ in
period 1. To leave period 1 consumption normalized at 1, we assume that proceeds from domestic
bond sales are rebated to domestic consumers.

The real amount of domestic goods needed to repay the government debt in period 2 becomes:

D2 =
DFC

E2
+
(
DLC +DLC,dom

)
exp(−π2). (B12)
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Because the government has access to lump-sum taxes, real period 2 domestic consumption equals
the domestic endowment minus real resources needed to repay government debt plus the payoff on
the domestically-held LC bond portfolio:

C2 = X2 −D2 +DLC,domexp(−π2). (B13)

Substituting (B12) into (B13) shows that domestic real consumption depends on DFC and DLC

but is independent of domestically-held debt DLC,dom:

C2 = X2 −
(
DFC

E2
+DLCexp(−π2)

)
. (B14)

Intuitively, surprise inflation reduces domestic consumers’ returns on their LC bond portfo-
lio. However, surprise inflation also reduces the taxes required to repay debt. With lump sum
taxes these two effects exactly cancel and domestic consumption is independent of the return on
domestically-held debt. The finding that real domestic consumption is independent of domestically-
held LC debt makes clear that externally-held debt is the key variable for the equilibrium inflation
policy and bond risks.

B.4 First-Order Conditions

Proof of Inflation First-Order Condition with Commitment
We now prove the commitment government’s first-order condition characterized by Eqns. (31)

and (32). To simplify the derivation, we assume that there is a discrete number of states j = 1, ..., N
that are realized with probability fj . With a discrete number of states fj takes the role of the
probability density function f (X2) in the main text. We use xj , πj etc. to denote the values
for log real domestic output and log inflation if state j is realized in period 2. In this section we
omit the superscript c and time period 2 subscript and reserve subscripts to indicate the state that
has been realized. For simplicity, we first prove Eqn. (31) with the two additional simplifying
assumptions that there is only one output shock (x∗j = xj∀j) and there is no real exchange rate
shock (εj = 0∀j), before proving the general case. In this simplified special case, the commitment
government’s problem is to choose the vector π1,π2,..., πN to maximize:

EU =

N∑
j=1

fj

(
C1−γ
j

1− γ
− α

2
π2
j

)
, (B15)

where consumption in state i is given by:

Ci = X̄exp
(
xi/X̄

)
− D̄

(
s

R∗
exp(−πi)
QLC

+ (1− s)
)
, (B16)

and the LC bond price equals:

QLC =

N∑
j=1

fjM
∗
j exp (−πj) . (B17)

Here, the international lenders’ SDF in state j follows from Eqn. (19) and equals:

M∗j = δ∗exp (−γ∗xj) . (B18)
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The international real risk-free rate satisfies:

1

R∗
=

N∑
j=1

fjM
∗
j . (B19)

The commitment government chooses the inflation rate in state i such that the marginal benefit
of raising inflation in that state equals the marginal cost. The derivative of ex-ante expected utility
with respect to log inflation in state i, dEU

dπi
, equals:

dEU
dπi

= fiU
′ (Ci)

∂Ci
∂πi

+
∂

∂QLC

 N∑
j=1

fj
C1−γ
j

1− γ

 dQLC

dπi
− fiαπi, (B20)

= fiU
′ (Ci)

∂Ci
∂πi

+

 N∑
j=1

fjU
′ (Cj)

∂Cj
∂QLC

 dQLC

dπi
− fiαπi, (B21)

where we use the notation U ′ (Cj) = ∂U
∂Cj

(Cj , πj) = C−γj . Dividing by the probability fi and setting
dEU
dπi

= 0 gives the first-order condition:

απi = U ′ (Ci)
∂Ci
∂πi

+
1

fi

dQLC

dπi
E
[
U ′ (Ci)

∂Ci
∂QLC

]
. (B22)

Differentiaing Eqn. (B17) with respect to πi shows that:

dQLC

dπi
= −fiM∗i exp (−πi) . (B23)

When the domestic output X2 follows a continuous probability distribution we need to replace fi
by the density f(X2), πi by πc2(X2), Ci by Cc2 (X2), and M∗i by M∗2 (X2). For brevity, we omit the
arguments of πc2, Cc2, and M∗2 , so Eqns. (B22) and (B23) become:36

απc2 = U ′ (C2)
∂C2

∂πc2
+

1

f (X2)

dQLC

dπc2
E
[
U ′ (Cc2)

∂Cc2
∂QLC

]
, (B24)

1

f (X2)

dQLC

dπc2
= −M∗2 exp (−πc2) . (B25)

This proves Eqns. (31) and (32) for the special case where X2 is the only shock in the model.
Next, we extend the proof to the case with exchange rate shocks and separate international and

domestic endowment shocks. Let fjk denote the probability that domestic real output state Xj

and real exchange rate Ek are realized. Note that we allow domestic output and the real exchange
rate to be correlated. We write the probability that output state j is realized as:

fj =
∑
k

fjk, (B26)

36Formally, the proof with a continuous probability density relies on the Calculus of Variations

but is otherwise analogous to the discrete probability case.
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so fj continues to be the analogue of the probability density f (X2) when X2 follows a continuous
distribution. When domestic output takes a discrete set of N values the government’s problem
simplifies to choosing π1,π2, ..., πN to maximize:

EU =
∑
j,k

fjk

(
C1−γ
jk

1− γ
− α

2
π2
j

)
, (B27)

where consumption in state (j, k) is given by

Cjk = X̄exp(xj/X̄)− D̄
(
s

R∗
exp(−πj)
QLC

+ (1− s) 1

Ek

)
(B28)

and the LC bond price is given by:

QLC = E [M∗2 exp (−πc2) E2] , (B29)

= E [E [M∗2E2 |X2 ] exp (−πc2)] , (B30)

=
∑
j,k

fjkE [M∗2E2 |X2 = Xj ] exp(−πj), (B31)

=
∑
j

fjE [M∗2E2 |X2 = Xj ] exp(−πj). (B32)

Here, we have used the law of iterated expectations and the definition of fj in Eqn. (B26).
Taking the derivative of expected domestic consumer utility, dEU

dπi
, with respect to the optimal

inflation rate in state i gives:

dEU
dπi

=
∑
k

fikU
′ (Cik)

∂Cik
∂πi

+
∂

∂QLC

∑
j,k

fjk
C1−γ
jk

1− γ

 dQLC

dπi
− fiαπi (B33)

=
∑
k

fikU
′ (Cik)

∂Cik
∂πi

+

∑
j,k

fjkU
′ (Cjk)

∂Cjk
∂QLC

 dQLC

dπi
− fiαπi. (B34)

Setting dEU
dπi

= 0 and dividing by the probability fi gives the inflation first-order condition:

απi =
∑
k

fik
fi
U ′ (Cik)

∂Cik
∂πi

+
1

fi

dQLC

dπi

∑
j,k

fjkU
′ (Cjk)

∂Cjk
∂QLC

 , (B35)

= E
[
U ′ (Cnik)

∂Cnik
∂πi

∣∣∣∣X2 = Xi

]
+

1

fi

dQLC

dπi
E
[
U ′ (Cjk)

∂Cjk
∂QLC

]
. (B36)

Taking the derivative of expression (B32) with respect to πi shows that:

1

fi

dQLC

dπi
= −exp(−πi)E [M∗2E2 |X2 = Xi ] . (B37)

If X2 and E2 follow continuous distributions we need to replace fi by f (X2), and πi by πc2(X2),
and Cik by Cc2 (X2, E2) in Eqns. (B36) and (B37). For brevity, we omit the arguments of πc2 and

29



Cc2 in the main text. This proves Eqns. (31) and (32) in the main text.37

Proof of Inflation First-Order Condition without Commitment
We next prove the no-commitment government’s inflation first-order condition Eqn. (30). With-

out commitment, the government’s problem is simply to maximize (B27) subject to (B28) but
taking the bond price QLC as given. If X2 and E2 follow discrete probability distributions the
first-order-condition becomes:

απi =
∑
k

fik
fi
U ′ (Cik)

∂Cik
∂πi

. (B38)

= E
[
U ′ (Cnik)

∂Cnik
∂πi

∣∣∣∣X2 = Xi

]
(B39)

If X2 and E2 follow continuous probability distributions, we need to replace πi by πnc2 (X2) and Cik
by Cnc2 (X2, E2). We again omit the arguments of πnc2 and Cnc2 , giving:

απnc2 = E
[
U ′ (Cnc2 )

∂Cnc2

∂πnc2

|X2

]
. (B40)

Proof of Eqn. (33)
We now prove Eqn. (33) in the main paper. First,

dEU
ds

=
d

ds
E

[
C1−γ

2

1− γ
− α

2
π2

2

]
, (B41)

= −αE
[
π2
dπ2

ds

]
+ E

[
U ′ (C2)

dC2

ds

]
. (B42)

Now, recall from Eqns. (14) and (15) that we can write real domestic consumption as:

C2 = X2 −
D̄

R∗
(
sRLC + (1− s)RFC

)
. (B43)

Because RFC = R∗is independent of s it follows that:

dC2

ds
= − D̄

R∗
(
RLC −RFC

)
− sD̄

R∗

(
dRLC

ds

)
. (B44)

Combining Eqns. (B42) and (B44) proves Eqn. (33) in the main paper. Because the government
faces a constrained optimization problem of choosing s from the interval [0, 1], a necessary condition
for an equilibrium is complementary slackness, that is either dEU

ds = 0 and s is at an interior solution,

or s = 1 anddEUds > 0, or s = 0 anddEUds < 0.

B.5 Proof of Proposition 1

Government without Commitment

37A formal proof with X2 and E2 continuous again requires the Calculus of Variations but is

otherwise analogous to the discrete case.
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We start by log-linearizing the first-order condition for the no-commitment government around
c2 = 0 and π2 = 0. Recall that the first-order condition for the inflation problem of a government
without commitment is given by:

απ2 = E
[
U ′ (C2)

∂C2

∂π2

∣∣∣∣X2

]
. (B45)

Before log-linearizing, we note that the following expressions hold exactly:

C2 = X̄ exp
(
x2/X̄

)
− D̄

(
(1− s) + s

1

R∗QLC
exp (−π2)

)
, (B46)

∂C2

∂π2
= sD̄

1

R∗QLC
exp (−π2) . (B47)

Eqn. (B46) follows from combining Eqns. (14), (15), (16), and (17) and using that in the
simplified special case E2 is constant and equal to one. Eqn. (B47) is the partial derivative of Eqn.
(B46) with respect to π2.

We start the log-linearization by noting that:

U ′ (C2) = C−γ2 ,

= exp(−γc2)

≈ 1− γc2. (B48)

We can approximately write period 2 consumption as a log-linear function of domestic output
and inflation as follows:

C2 = X̄ exp
(
x2/X̄

)
− D̄

(
(1− s) + s

1

R∗QLC
exp (−π2)

)
(B49)

≈ X̄ + x2 − D̄ ((1− s) + s (1− (π2 − Eπ2)))

= 1 + x2 + sD̄ (π2 − Eπ2) .

Note that we have used the definition that X̄ = D̄+ 1, which ensures that C2 equals one when
all shocks are equal to zero. We have also dropped second- and higher-order terms. It then follows
that log consumption approximately equals:

c2 ≈ C2 − 1 (B50)

≈ x2 + sD̄ (π2 − Eπ2) . (B51)

Substituting Eqn. (B51) into Eqn. (B48) shows that we can write domestic marginal consumption
utility as an approximately log-linear function of domestic output and inflation:

U ′ (C2) ≈ 1− γx2 − γsD̄ (π2 − Eπ2) . (B52)
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Also, we have the log-linear approximation

∂C2

∂π2
= sD̄

1

R∗QLC
exp (−π2) (B53)

≈ sD̄ exp (− (π2 − Eπ2))

≈ sD̄ (1− (π2 − Eπ2)) .

In the special case with no real exchange rate shocks (ε2 = 0) and only one global output
shock (x2 = x∗2), the conditional expectation on the right-hand side of Eqn. (B45) is trivial and the
first-order condition for the no-commitment government has the following log-linear approximation:

απ2 = U ′ (C2)
∂C2

∂π2
,

απ2 ≈ sD̄
(
1− γx2 − γsD̄ (π2 − Eπ2)

)
(1− (π2 − Eπ2)) ,

≈ sD̄
(
1− γx2 − γsD̄ (π2 − Eπ2)− (π2 − Eπ2)

)
, (B54)

where in the last row we have dropped quadratic terms in x2 and π2. Solving for π2 gives the
optimal no-commitment inflation policy:(

α+ γ
(
sD̄
)2

+ sD̄
)
π2 = sD̄ (1− γx2) +

(
sD̄ + γ

(
sD̄
)2)Eπ2. (B55)

Because lenders’ expectations are rational (B55) implies that Eπ2 = sD̄
α and therefore that:

π2 =
sD̄

α+ γ
(
sD̄
)2

+ sD̄
(1− γx2) +

sD̄

α+ γ
(
sD̄
)2

+ sD̄

sD̄ + γ
(
sD̄
)2

α
. (B56)

We keep only the lowest-order terms in the debt-to-GDP ratio D̄ in the expression (B56). Using
the first-order Taylor approximations

sD̄

α+ γ
(
sD̄
)2

+ sD̄
≈ sD̄

α
+O

(
D̄2
)

(B57)

sD̄

α+ γ
(
sD̄
)2

+ sD̄

sD̄ + γ
(
sD̄
)2

α
≈ 0 +O

(
D̄2
)

(B58)

shows that up to second- and higher-order terms in D̄ the inflation policy function (B56) has the
following simple form:

πnc2 ≈ sD̄

α
− γ sD̄

α
x2. (B59)

Government with Commitment
We log-linearize the first-order condition for the commitment government around c2 = 0 and

π2 = 0. Substituting in for ∂C2
∂π2

from Eqn. (B47) and
1

f(X2)
dQLC

dπ2(X2) = − exp(−πc2(X2))E [M∗2E2|X2] from Eqn. (32), the first-order condition for the
inflation problem of a government with commitment is given by:
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απn2 = sD̄
R∗QLC

E
[
U ′ (Cn2 ) exp (−π2)

∣∣X2

]
− E

[
U ′ (C2)

∂C2

∂QLC

]
exp(−π2)E [M∗2E2|X2] .(B60)

Note that Eqn. (31) is exact and is the starting point for our log-linearization. In the special
case with no real exchange rate shocks (ε2 = 0) and only one output shock (x2 = x∗2), Eqn. (19)
can be written as:

E [M∗2E2|X2] = δ∗ exp(−γ∗x2), (B61)

=
1

R∗
exp

(
−γ∗x2 −

1

2
(γ∗)2 σ2

x

)
. (B62)

Taking the partial derivative of Eqn. (B46) with respect to the LC bond price gives the exact
expression:

∂C2

∂QLC
=

sD̄

R∗
exp(−π2)

(QLC)2 . (B63)

Substituting Eqn. (B62) and Eqn. (B63) into Eqn. (B60), the commitment government’s first-order
condition can be written as:

απn2 =
sD̄

R∗QLC
U ′ (Cn2 ) exp (−π2)

− sD̄

(R∗QLC)2E
[
U ′ (C2) exp(−π2)

]
exp

(
−π2 − γ∗x2 −

1

2
(γ∗)2 σ2

x

)
.

(B64)

The conditional expectations drop out of Eqn. (B64) because we are considering the special case
with only one shock. We again use the log-linear expression Eqn. (B52) and log-linearize the last
term in Eqn. (B64) to obtain:

− sD̄

(R∗QLC)2E
[
U ′ (C2) exp (−π2)

]
exp

(
−π2 − γ∗x2 −

1

2
(γ∗)2 σ2

x

)
,

≈ −sD̄E
[(

1− γx2 − γsD̄ (π2 − Eπ2)
)

exp (−π2)
]

exp(2Eπ2 − π2 − γ∗x2 −
1

2
(γ∗)2 σ2

x),

≈ −sD̄E
[
1− γx2 − γsD̄ (π2 − Eπ2)− π2

]
exp(2Eπ2 − π2 − γ∗x2 −

1

2
(γ∗)2 σ2

x),

≈ −sD̄ (1− γ∗x2 − (π2 − Eπ2)) .

The remaining terms in the commitment government’s first-order condition (B64) are identical
to the no-commitment case, so the log-linear approximation to Eqn. (B64) (and hence Eqn. (31))
is given by:

απ2 = sD̄
(
1− γx2 − γsD̄ (π2 − Eπ2)− (π2 − Eπ2)

)
−sD̄ (1− γ∗x2 − (π2 − Eπ2)) . (B65)

Taking expectations of the left-hand side and right-hand side of Eqn. (B65) and imposing that
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lenders’ expectations are rational shows that Eπ2 = 0, so optimal log inflation for a government
with commitment equals:

π2 =
sD̄

α+ γ
(
sD̄
)2 (γ∗ − γ)x2. (B66)

Using the first-order Taylor approximation

sD̄

α+ γ
(
sD̄
)2 =

sD̄

α
+O

(
D̄2
)

(B67)

shows that up to second- and higher-order terms in D̄ the inflation policy function (B66) has
the following simple form:

π2 ≈ sD̄

α
(γ∗ − γ)x2 (B68)

B.6 Numerical Solution

We solve the model numerically using global projection methods. Our strategy for the numerical
solution uses the following strategy:

No-Commitment

1. For any given LC debt share s, we choose the no-commitment inflation function πnc2 (x2) to
minimize the error in the government’s inflation first-order condition while holding constant
the LC debt share using the MATLAB function fminsearch.

2. In an outer loop, we maximize expected domestic consumer utility with respect to the LC
debt share, s. For this step, we use the MATLAB function fminbnd over the interval [0, 1.001].
The maximization is over optimal expected domestic consumer utility conditional on the LC
debt share, s, which we obtain by repeating step 1. above for every value of s.

Commitment

1. For any given LC debt share s, we choose the commitment policy function πc2 (x2) to maximize
expected domestic utility conditional on the LC debt share using the MATLAB function
fminsearch.

2. In an outer loop, we maximize expected domestic consumer utility with respect to the LC
debt share, s. For this step, we use the MATLAB function fminbnd over the interval [0, 1.001].
The maximization is over optimal expected domestic consumer utility conditional on the LC
debt share, s, which we obtain by repeating step 1. above for every value of s.
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B.6.1 Functional Form

Our numerical procedure considers inflation functions that can be written as a third-order polyno-
mial in x2:

πnc2 (x2) = b1(s) + b2(s)x2 + b3(s)x2
2 + b4(s)x3

2, (B69)

πc2(x2) = c1(s) + c2(s)x2 + c3(s)x2
2 + c4(s)x3

2. (B70)

All coefficients may depend on the LC debt share, s. We use the following vectors as the starting
point for our optimization routine:

b = [0.0183,−0.5363, 7.9462,−60] (B71)

c = [0.0028, 0.2061,−5.8417, 20]. (B72)

B.6.2 Bond Pricing Function

For any given inflation function, we need to solve for bond prices numerically. To facilitate numerical
integration, we first project all exogenous random variables onto x2 and a shock that is orthogonal
to x2 but is correlated with real exchange rates. We re-write international log real consumption as
a component correlated with domestic output plus and an independent shock:

x∗2 = λ∗x2 + η∗2, (B73)

where we define:

λ∗ = λx,x
∗ (σ∗)2

σ2
x

, (B74)

η∗2 ⊥ x2, (B75)(
σ∗η
)2

= (σ∗)2 − (λ∗)2 σ2
x. (B76)

Note that writing the relation between domestic and international endowments as (B73) is consis-
tent with assumptions (23) through (24) in the main paper. That η∗2 is uncorrelated with x2 is not
a new assumption and indeed follows from (23), (24), and the definition λ∗.

For the numerical solution, we use the notation ρ∗ = λε,x
∗
, so with Eqn. (B73) the log real

exchange rate can be written as:

ε2 = ρ∗x∗2 + e2 (B77)

σ2
e = σ2

ε − (ρ∗λ∗)2 σ2
x − (ρ∗)2 (σ∗η)2 , (B78)

where σε is the standard deviation of the real exchange rate and e2 is uncorrelated with x∗2 and x2.
We can then write the real exchange rate as a component correlated with log domestic log output
plus a shock, e∗2, that is uncorrelated with domestic output:

ε2 = (ρ∗λ∗)x2 + e∗2, (B79)

e∗2 = e2 + ρ∗η∗2,

(σ∗e)
2 = σ2

ε − (ρ∗λ∗)2 σ2
x.
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We next use that 1/R∗ = δ∗exp
(

1
2 (γ∗σ∗)2

)
. The ratio of LC bond prices to 1/R∗ then equals:

QLC1

1/R∗
= Ex2,e∗2,ξ2,η∗2

[
exp

(
−γ∗x∗2 −

1

2
(γ∗σ∗)2 − π2 + ρ∗x∗2 + e2 −

1

2
σ2
ε

)]
= Ex2,e∗2,ξ2,η∗2

[
exp

(
−γ∗x∗2 −

1

2
(γ∗σ∗)2 − π2 + ρ∗x∗2 −

1

2

(
σ2
ε − σ2

e

))]
(B80)

= Ex2,e∗2,ξ2
[
exp

(
− (θ∗ − ρ∗λ∗)x2 − (γ∗ − ρ∗) η∗2 − π2 −

1

2
(γ∗σ∗)2 − 1

2

(
σ2
ε − σ2

e

))]
(B81)

= Ex2,e∗2,ξ2
[
exp

(
− (θ∗ − ρ∗λ∗)x2 − π2 +

1

2
(γ∗ − ρ∗)2 (σ∗η)2 − 1

2
(γ∗σ∗)2 − 1

2

(
σ2
ε − σ2

e

))]
,

where we define the international lenders’ effective risk aversion over domestic output as:

θ∗ = γ∗λ∗. (B82)

For any given inflation policy π2 (x2) it is then relatively convenient to evaluate the following
ratio numerically:

QLC1

1/R∗ exp
(

1
2 (γ∗ − ρ∗)2 (σ∗η)2 − 1

2 (γ∗σ∗)2 − 1
2 (σ2

ε − σ2
e)
) = Ex2 [exp (− (θ∗ − ρ∗λ∗)x2 − π2 (x2))] .

(B83)

We evaluate the expectation (B83) numerically using Gauss-Legendre quadrature with 30 node
points, truncating the interval at -6 and +6 standard deviations of x2.

B.6.3 No-Commitment Policy Function

For a given LC debt share s, we choose the coefficients (b1, b2, b3, b4) to set the government’s
inflation first-order condition as close as possible to zero. For any set of coefficients, we evaluate
the first-order condition error:

Error(x2) = Ee∗2

[(
−απnc2 (x2) + (Cnc2 )−γ

dCnc2

dπnc2

)∣∣∣∣x2

]
. (B84)

The expectation (B84) is averaged over e∗2 but conditional on domestic output x2. At any value
of x2 and e∗2, no-commitment consumption is evaluated via:

Cnc2 = X̄ exp(x2/X̄)− D̄
(

(1− s) exp

(
−ε2 +

1

2
σ2
ε

)
+ s

1/R∗

QLC1

exp(−πnc2 (x2))

)
. (B85)

= X̄ exp(x2/X̄)− D̄
(

(1− s) exp

(
− (ρ∗λ∗)x2 − e∗2 +

1

2
σ2
ε

)
+ s

1/R∗

QLC1

exp(−πnc2 (x2))

)
,

and the partial derivative of no-commitment consumption with respect to no-commitment inflation
is evaluated via:

dCnc2

dπnc2

= D̄s
1/R∗

QLC
exp(−πnc2 ). (B86)
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Because lenders have rational expectations the LC bond price is evaluated via Eqn. (B83). We
evaluate the expectation in Eqn. (B84) over e∗2 numerically using Gauss-Legendre quadrature with
30 nodes and truncation at -6 and +6 standard deviations. We choose the vector of coefficients
(b1, b2, b3, b4) to minimize the expected squared Euler equation error averaged over possible realiza-
tions of x2, that is we minimize Ex2

[
Error(x2)2

]
. That is, we minimize the weighted average of the

squared Euler equation errors, where each realization of x2 is weighted by its probability. To take
the expectation over x2, we again use Gauss-Legendre quadrature with 30 nodes and truncation at
-6 and +6 standard deviations.

In the outer loop, we then maximize expected utility Ex2,e∗2

[(
−α

2 (πnc2 )2 +
Cnc,1−γ2

1−γ

)]
in Eqn.

(B84) over s, where for any s the coefficients (b1, b2, b3, b4) are found as described above.

B.6.4 Commitment Policy Function

For a given LC debt share s, we choose the commitment inflation policy function coefficients
(c1, c2, c3, c4) to maximize the expectation:

Ex2,e∗2

[(
−α

2
(πc2)2 +

Cc,1−γ2

1− γ

)]
, (B87)

where we evaluate commitment consumption numerically:

Cc2 = X̄ exp(x2/X̄)− D̄
(

(1− s) exp

(
− (ρ∗λ∗)x2 − e∗2 +

1

2
σ2
ε

)
+ s

1/R∗

QLC1

exp(−πc2(x2))

)
.

(B88)

and LC bond prices update with the commitment inflation policy function through (B83). All
expectations are again evaluated numerically using Gauss-Legendre quadrature using the same
grid points as before.

In the outer loop, we maximize Ex2,e∗2

[(
−α

2 (πc2)2 +
Cc,1−γ2

1−γ

)]
over s, where for any s the coef-

ficients (c1, c2, c3, c4) are found as described above.

B.6.5 Model Moments

We use Gauss-Legendre quadrature to evaluate inflation moments numerically. For both x2 and e∗2,
we use 30 nodes and truncate the interval at -6 and +6 standard deviations. We evaluate average
inflation, the bond-stock beta and the LC bond risk premium numerically as:

Emodelπ2 = Ex2,e∗2π2, (B89)

βmodel(bondi, stocki) =
−1

λm,x
Ex2,e∗2 [(π2 − Eπ2)x2]

σ2
x

, (B90)

RPLC,model = logEx2,e∗2 [exp(−π2)]− logQLC − r∗. (B91)

B.6.6 Plotting the Inflation Policy Functions

Figure B1 shows inflation as a function of period 2 log domestic output. Consistent with the
intuition from Proposition 1, DM inflation decreases in the worst states of the world, thereby
providing international lenders with safe assets. A government with commitment optimally adopts
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Figure B1: Inflation Policy Functions
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Note: This figure shows log inflation π2 against log output x2 both in annualized %, in the calibrated model.
The solid blue lines indicate the EM calibration, while the dashed red lines indicate the DM calibration.

pro-cyclical inflation, selling insurance to international lenders and earning the risk premium. This
is similar to the problem studied in Farhi and Maggiori (2018) with a risk-neutral government and
risk-averse lenders. By contrast, EM inflation increases in the worst states of the world. Intuitively,
EM governments cannot commit to limiting their own consumption smoothing and instead have
an incentive to use inflation in the worst states of the world to smooth domestic consumption
fluctuations.

B.7 Calibration Robustness

B.7.1 Risk-Neutral Investors

The following table BI shows the calibration moments for an alternative calibration, that sets risk
aversion parameters to conventional values in the real business cycle literature (γ∗ = 0, γ = 2).
All other parameters are as listed in Table V. As described in Section B, under this alternative
calibration the bond-stock beta is somewhat higher for DM (commitment) countries than for EM
(no commitment) countries, so it cannot match our main empirical evidence that bond-stock betas
are negatively correlated with LC debt shares across countries. Of course, LC bond risk premia are
also zero under this alternative calibration, because international lenders are risk-neutral.
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Table BI: Empirical and Model Moments - Risk Neutral Calibration

EM
(no commitment)

DM
(commitment)

EM-DM

Data Model Data Model Data Model

Average Inflation 3.92% 1.46% 1.73% 0.00% 2.20% 1.46%

LC Bond-Stock Beta 0.07 0.01 -0.10 0.02 0.17 -0.02

LC Debt Share 0.55 0.43 0.90 1.00 -0.35 -0.57

LC Bond RP 3.15% 0.00% 1.53% 0.00% 1.62% 0.00%
Note: All moments are in annualized natural units. This table is analogous to Table VI in the main paper,
except that γ∗ = 0 and γ = 2. All other model parameters for the EM and DM calibrations are given in
Table V. Model average inflation is the unconditional average of level inflation. The model bond-stock beta
is computed according to Eqn. (B10). The model LC bond risk premium in % is computed according to
Eqn. (39).

B.7.2 Separate EM and DM Local-International Endowment Loadings

We now verify that calibration results are unchanged if we match the domestic-international en-
dowment loadings to the data separately for emerging and developed markets. We set λx,x

∗
= 0.87

for EMs and λx,x
∗

= 0.97 for DMs to match the average slope coefficients of domestic output
growth with respect to US consumption growth averaged separately for EM and DM data. All
other parameter values are as listed in Table V. Table BII shows that the model moments are
qualitatively and quantitatively unchanged compared to Table VI in the main paper.

Table BII: Model Moments with Separate Local-International Endowment Loadings

EM
(no commitment)

DM
(commitment)

EM-DM

Data Model Data Model Data Model

Average Inflation 3.92% 2.12% 1.73% 0.00% 2.20% 2.11%

LC Bond-Stock Beta 0.07 0.15 -0.10 -0.06 0.17 0.21

LC Debt Share 0.55 0.38 0.90 0.96 -0.35 -0.58

LC Bond RP 3.15% 4.27% 1.53% 2.03% 1.62% 2.24%

Note: All moments are in annualized natural units. Model parameters for the EM and DM cali-
brations are given in Table V, except for the local-global endowment loadings, which we set to set
to λx,x

∗
= 0.87 for EMs and λx,x

∗
= 0.97 for DMs. Model average inflation is the unconditional

average of level inflation. The model bond-stock beta is computed according to Eqn. (B10).

B.7.3 Separate EM and DM Exchange Rate Processes

We now verify that the calibration results are qualitatively and quantitatively unchanged if we
calibrate EM and DM real exchange rate processes separately to the data. To match the data
moments averaged separately over EMs and DMs, we set σε = 10.4% and λε,x

∗
= 1.33 for the EM

calibration and σε = 11.4% and λε,x
∗

= 1.56 for the DM calibration. All other parameter values
are as listed in Table V. The resulting model moments are shown in Table BIII.
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Table BIII: Model Moments with Separate Exchange Rate Processes

EM
(no commitment)

DM
(commitment)

EM-DM

Data Model Data Model Data Model

Average Inflation 3.92% 2.07% 1.73% 0.00% 2.20% 2.06%

LC Bond-Stock Beta 0.07 0.15 -0.10 -0.05 0.17 0.20

LC Debt Share 0.55 0.37 0.90 0.91 -0.35 -0.54

LC Bond RP 3.15% 3.95% 1.53% 2.53% 1.62% 1.42%

Note: All moments are in annualized natural units. Model parameters for the EM and DM calibra-
tions are given in Table V, except for the exchange rate processes, which we calibrate separately to
the data in this table. We set σε = 10.4% and λε,x

∗
= 1.33 for the EM calibration and σε = 11.4%

and λε,x
∗

= 1.56 for the DM calibration. Model average inflation is the unconditional average of
level inflation. The model bond-stock beta is computed according to Eqn. (B10).

B.7.4 Varying the DM Inflation Cost Parameter

We now verify the robustness of our calibration results to choosing different inflation cost parameters
for the DM calibration. In our baseline calibration, the inflation cost parameter, α, is pinned down
by the average difference in inflation between EMs and DMs in the data. In our baseline calibration,
we choose the same inflation cost parameter for EMs and DMs for symmetry and to focus on the
effect of credibility, which also varies across EM and DM calibrations. However, it appears plausible
that the inflation cost of DMs is different from EMs. The DM inflation cost could be higher if DM
policy makers assign a higher cost to inflation. Or it could be lower, if DM institutions are better
able to smooth out frictions caused by inflation.

Here, we verify that the calibration results are similar for a range of values for the DM inflation
cost parameter, αDM . We consider a wide range of values for αDM , setting it to one half and twice
the baseline value of α = 4.28. All other parameter values are set to the DM values in Table V.
The resulting model moments in Table BIV show that DM model moments are largely insensitive
to αDM . Average inflation is equal to zero – the optimal level in the model – for all values of α,
because a government with full commitment always chooses average inflation equal to the optimal
level. The LC debt share is close to 0.90 for a wide range of inflation cost parameters, and the
bond-stock beta varies within a relatively narrow range from −0.03 to −0.09.

Table BIV: Model Robustness to Different Inflation Costs

DM Data Baseline Low Inflation Cost High Inflation Cost

α = 4.28 α = 2.14 α = 8.56

Average Inflation 1.73% 0.00% 0.00% 0.00%

LC Bond-Stock Beta -0.10 -0.05 -0.09 -0.03

LC Debt Share 0.90 0.91 0.92 0.90

LC Bond RP 1.53% 2.22% 1.90% 2.46%
Note: All moments are in annualized natural units. Model parameters are given by the DM
calibration in Table V, except for the inflation cost, α, which is listed in the column header. Model
average inflation is the unconditional average of level inflation. The model bond-stock beta is
computed according to Eqn. (B10).
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