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A Supply Side Microfoundations

A.1 Final good

A final consumption good is produced by a representative perfectly competitive firm from a

continuum of differentiated goods Yi,t:

Yt =

(
Y

ϵp−1

ϵp

i,t

) ϵp
ϵp−1

. (A1)

The constant ϵp > 1 is the elasticity of substitution across intermediate goods. The resulting

demand for the differentiated good i is downward-sloping in its product price Pi,t:

Yi,t = Yt

(
Pi,t
Pt

)−ϵp
. (A2)

The aggregate price level is given by

Pt =

(∫ 1

0

P
−(ϵp−1)
i,t di

)− 1
ϵp−1

. (A3)

A.2 Intermediate good producers

Intermediate goods firm i produces according to a Cobb-Douglas production function with

constant returns to scale

Yi,t = AtNi,t, (A4)

where productivity equals At and Nt is the supply of the aggregate labor index. Each firm

takes the downward-sloping demand schedule as given (A3) and may therefore choose a

different amount of the aggregate labor index. With the final good equation (A1) aggregate

output equals

Yt = AtNt (A5)

where

Nt =

∫ 1

0

Ni,tdi. (A6)
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The aggregate resource constraint is simple because there is no real investment and con-

sumption equals output:

Ct = Yt. (A7)

Following Lucas (1988) we assume that productivity depends on past skills gained by all

agents, and depends on past market labor, nt−1:

at = ν + at−1 + (1− ϕ)nt−1, (A8)

where 0 ≤ ϕ ≤ 1 and ν > 0 are constants. The assumption (A8) ensures that potential out-

put increases with past output. The process(A8) can equivalently be interpreted as a simple

endogenous capital stock, similarly to Woodford (2003, Chapter 5), if a fixed proportion of

market labor each period is used to produce investment goods with a constant-returns-to-

scale technology, and the total amount of labor is scaled accordingly.

Intermediate firm i′ real profit in period t equals

Pri,t =
Pi,t
Pt
Yi,t −

Wt

Pt
Ni,t, (A9)

subject to the production function (A4), demand for differentiated goods (A2), and taking

the wage Wt as given.

A.3 Employment agency

There is a continuum of monopolistically competitive households, each of which supplies

a differentiated labor service, Lh,t, to the production sector. A representative employment

agency aggregates households’ labor hours according to a CES production technology with

elasticity of substitution ϵw > 1:

Nt =

(∫ 1

0

L
ϵw−1
ϵw

h,t

) ϵw
ϵw−1

(A10)

The agency produces the aggregate labor index, Nt, taking each household’s wage rate,

Wh,t as given, and then sells it to the production sector at the unit cost Wt. The profit

maximization of the employment agency is:

maxLh,t
Wt

(∫ 1

0

Lϵw−1
h,t ϵw

)
−
∫ 1

0

Wh,tLh,tdh, (A11)
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which yields the following demand schedule for the labor hours of household h:

Lh,t =

(
Wh,t

Wt

)−ϵw
Nt. (A12)

The wage index faced by intermediary producers is then given by

Wt =

(∫ 1

0

W 1−ϵw
h,t

) 1
1−ϵw

. (A13)

A.4 Labor-leisure choice

Following the classic model of Greenwood et al. (1988), we assume that total consumption

consists of a combination of market consumption and home production, given by:

Chome
h,t = At

(
1−

L1+η
h,t

1 + η

)
(A14)

Home production has decreasing returns to scale as in Campbell and Ludvigson (2001),

and the parameter η determines the elasticity of market labor supply. Household h’s utility

depends on market and home good consumption and the corresponding external habit levels

Ht and H
home
t :

Uh,t =

(
(Ch,t −Ht) +

(
Chome
h,t −Hhome

t

))1−γ − 1

1− γ
(A15)

We assume that home good habits are shaped by the aggregate consumption of home goods,

so Hhome
t = Chome

t and in equilibrium home goods drop out of the utility function because

all households end up choosing the same labor supply in equilibrium. Home production

nonetheless matters for the wage-setting first-order condition, which depends on the marginal

change in utility from choosing an off-equilibrium path labor supply. External market habit

is described by the surplus consumption dynamics in the main paper.

A.5 Price- and wage-setting

We consider the simplified case with flexible product prices but sticky wages. Wage-setting

frictions take the form of Rotemberg (1982). Specifically, we assume that wage-setters face

a quadratic cost if they raise wages faster than past inflation. The indexing to past inflation

is analogous to the indexing assumption in Smets and Wouters (2007) and Christiano et al.
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(2005). The cost of re-setting wages for household h in terms of aggregate output equals

Costh =
γw
2

(
Wh,t

Wh,t−1

/
Wt−1

Wt−2

− 1

)2

Yt. (A16)

We assume that wage-setting costs get rebated to households lump-sum, i.e. aggregate

consumption is unaffected.

A.6 Profit first-order condition

Because product prices are flexible, intermediate firm i’s profit becomes

Pri,t = Yt

((
Pi,t
Pt

)−(ϵp−1)

− Wt

PtAt

(
Pi,t
Pt

)−ϵp
)
. (A17)

Taking the first-order condition with respect to the relative price
Pi,t

Pt
gives

Pi,t
Pt

=
ϵp

ϵp − 1

Wt

PtAt
. (A18)

Because in equilibrium all firms end up choosing the same price, we have that the real wage

equals

Wt

Pt
=
ϵp − 1

ϵp
At. (A19)

This means that due to partially monopolistic competition the real wage is compressed by

a constant fraction relative to productivity and equilibrium profits of intermediary i are

exactly proportional to aggregate output:

Pri,t =
1

ϵp
Yt. (A20)

This is good because a consumption claim is the same as a claim to firm profits.

A.7 Wage-setting first-order condition with flexible wages

To derive the wage-setting first-order condition, we first start by understanding what happens

if wages are flexible. In this case, the first-order condition equals:
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0 =
d
(
Ch,t + Chome

h,t

)
d (Wh,t/Wt)

(A21)

=
d

d (Wh,t/Wt)

[
Wh,t

Pt

(
Wh,t

Wt

)−ϵw
Nt −

At
1 + η

(
Wh,t

Wt

)−ϵw(1+η)

N
(1+η)
t

]
, (A22)

=

[
(−ϵw + 1)

Wt

Pt
Nt

(
Wh,t

Wt

)−ϵw
+ ϵwAt

(
Wh,t

Wt

)−ϵw(1+η)−1

N
(1+η)
t

]
(A23)

Because all wage-setters choose the same flexible-wage wage, we can set Wh,t = Wt. It

then follows that the flexible-wage real wage increases proportionately with productivity

and increases with the total amount of labor supplied

W flex
t

Pt
=

ϵw
ϵw − 1

AtN
η
t , (A24)

=
ϵw

ϵw − 1
A1−η
t Y η

t (A25)

A.8 Sticky wage first-order condition

In the derivation of the wage Phillips curve we use the operator Ẽt to denote the partially

adaptive inflation expectations of wage-setters. With the quadratic wage-setting cost (A14)

the first-order condition for wage-setting becomes

0 =
d
(
Ch,t + Chome

h,t

)
d
(
Wh,t

Wt

) − γw

(
Wh,t

Wh,t−1

Wt−2

Wt−1

− 1

)
Wt

Wh,t−1

Wt−2

Wt−1

Yt

+γwẼtMh,t+1

(
Wh,t+1

Wh,t

Wt−1

Wt

− 1

)
Wh,t+1

Wh,t

Wt

Wh,t

Wt−1

Wt

Yt+1,

(A26)

Since there is symmetry (i.e. all households face the same problem), we can drop the h index

when solving for the aggregate wage.

A.9 Log-linearizing the first-order wage-setting condition

Denoting the flexible wage steady-state output by Ȳt, we have that

Ȳt = AtN̄ , (A27)
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where the flexible-wage labor supply solves

ϵp − 1

ϵp
=

ϵw
ϵw − 1

N̄η. (A28)

Using lower case for logs and hats to denote deviations from the flexible-wage equilibrium,

the log output gap equals

xt ≡ ŷt = nt − n̄, (A29)

= n̂t. (A30)

The steady-state stochastic discount factor equals

M̄t,t+1 = βexp (−γg) . (A31)

For convenience we define the constant

βg ≡ βexp(−(γ − 1)g). (A32)

Letting πwt = log Wt

Wt−1
denote nominal log wage inflation and taking a first-order approx-

imation around πw = 0, expression (A26) simplifies to:

0 = (−ϵw + 1)
Wt

Pt
Nt + ϵwAtN

(1+η)
t − γw

(
πwt − πwt−1

)
Yt

+γwYtẼtMt+1

(
πwt+1 − πwt

) Yt+1

Yt
(A33)

Re-arranging:

ϵw − 1 = ϵwAt
Pt
Wt

Nη
t − γw

(
πwt − πwt−1

) Pt
Wt

Yt
Nt

+βγw
Pt
Wt

Yt
Nt

ẼtMt+1

(
πwt+1 − πwt

) Yt+1

Yt
, (A34)

= ϵwAt
Pt
Wt

Nη
t − γw

(
πwt − πwt−1

) Pt
Wt

Yt
Nt

+γw
Pt
Wt

Yt
Nt

βgẼt
(
πwt+1 − πwt

)
, (A35)

where in the last step we dropped second-order terms in Mt+1 and output growth interacted
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with wage inflation. We next substitute the production function into (A35):

(ϵw − 1)
Wt

AtPt
= ϵwN

η
t − γw

(
πwt − πwt−1

)
+ βgγwẼt

(
πwt+1 − πwt

)
, (A36)

(A37)

giving the wage Phillips curve

πwt =
1

1 + βg
πwt−1 +

βg

1 + βg
Ẽtπ

w
t+1 + γ−1

w

(
ϵwN

η
t − (ϵw − 1)

Wt

AtPt

)
. (A38)

Note that the term in parentheses is the wedge between the real productivity-adjusted wage

and workers’ productivity-adjusted disutility of labor. Because we have flexible product

prices the real productivity-adjusted wage is constant and we can substitute in from (A19):

πwt =
1

1 + βg
πwt−1 +

βg

1 + βg
Ẽtπ

w
t+1 + γ−1

w

(
ϵwN

η
t − (ϵw − 1)

ϵp − 1

ϵp

)
(A39)

In the flexible-wage equilibrium the term in parentheses is zero, giving the first-order log-

linearization

ϵwN
η
t − (ϵw − 1)

ϵp − 1

ϵp
= ϵwN̄

ηexp(ηn̂t)− (ϵw − 1)
ϵp − 1

ϵp
, (A40)

≈ ϵwN̄
ηηn̂t, (A41)

= ϵwN̄
ηηŷt (A42)

We therefore obtain the standard log-linearized wage Phillips curve

πwt =
1

1 + βg
πwt−1 +

βg

1 + βg
Ẽtπ

w
t+1 + κŷt, (A43)

where the constant κ equals

κ = γ−1
w ϵwN̄

ηη (A44)

Substituting in the adaptive inflation expectations assumption

Ẽtπ
w
t+1 = (1− ζ)Etπ

w
t+1 + ζπwt−1, (A45)

gives the wage Phillips curve

πwt = ρππwt−1 + fπEtπ
w
t+1 + κŷt, (A46)
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where

ρπ =
1

1 + βg
+ ζ − 1

1 + βg
ζ, (A47)

fπ = 1− ρπ. (A48)

Phillips curve shocks to (A46), vπ,t, arise from making the degree of monopolistic wage-

setting frictions ϵw or the marginal cost of providing labor outside the home η time-varying.

A.10 Price inflation

Product prices equal

Pt =
ϵp

ϵp − 1

Wt

At
, (A49)

so log price inflation equals (up to a constant)

πpt = πwt −∆at, (A50)

= πwt − (1− ϕ)ŷt−1, (A51)

where the log deviation of real GDP from potential is the output gap, i.e. xt = ŷt.

B Solution

In the absence of demand shocks the lagged output gap does not enter as a separate state

variable because xt−1 can be expressed as a linear combination of the time-t state vector Yt.

This is no longer possible in the presence demand shocks, thereby adding xt−1 as a new state

variable for asset prices relative to Campbell, Pflueger and Viceira (2020).

B.1 Solving for macroeconomic dynamics

The full macroeconomic dynamics are determined by the Euler equation, the wage Phillips

curve (A46) and the monetary policy rule, as well as the short-rate Fisher equation rt =

it − Etπ
p
t+1, the relationship between price and wage inflation (A51). The Euler equation is

given by

xt = fxEtxt+1 + ρxxt−1 − ψ
(
it − Etπ

p
t+1

)
+ vx,t, (A52)
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where

ρx =
θ2

ϕ− θ1
, (A53)

fx =
1

ϕ− θ1
, (A54)

ψ =
1

γ(ϕ− θ1)
, (A55)

θ2 = ϕ− 1− θ1. (A56)

The wage Phillips curve is given by

πwt = ρππwt−1 + fπEtπ
w
t+1 + κxt + vπ,t, (A57)

The monetary policy rule is given by

it = ρiit−1 + (1− ρi) (γxxt + γππpt ) + vi,t, (A58)

where vx,t =
1

γ(ϕ−θ1)ξt denotes the demand shock; vπ,t is the supply shock; and vi,t is the

monetary policy shock.

We want to find a solution of the form

Yt = BYt−1 + Σvt, (A59)

where the matrix B is [3× 3], the matrix Σ is [3× 3], and we work with the state vector

Yt = [xt, π
w
t , it]

′, (A60)

and the shock vector

vt = [vx,t, vπ,t, vi,t]
′. (A61)

Using the relationship (A51), we can write the macroeconomic dynamics in terms of the

state vector Yt:

Y1,t = fxEtY1,t+1 + ρxY1,t−1 − ψ (Y3,t − EtY2,t+1 + (1− ϕ)Y1,t) + vx,t, (A62)

Y2,t = fπEtY2,t+1 + ρπY2,t−1 + κY1,t + vπ,t, (A63)

Y3,t = ρiY3,t−1 + (1− ρi) (γxY1,t + γπY2,t − γπ(1− ϕ)Y1,t−1) + vi,t. (A64)
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We can write this in matrix form:

0 = FEtYt+1 +GYt +HYt−1 +Mvt,

where the matrices F , G and H are given by

F =


fx

1+ψ(1−ϕ)
ψ

1+ψ(1−ϕ) 0

0 fπ 0

0 0 0

 ,

G =

 −1 0 − ψ
1+ψ(1−ϕ)

κ −1 0

(1− ρi)γx (1− ρi)γπ −1

 ,

H =


ρx

1+ψ(1−ϕ) 0 0

0 ρπ 0

−(1− ρi)(1− ϕ)γπ 0 ρi

 .
The matrix M is [3× 3] and equals:

M =


1

1+ψ(1−ϕ) 0 0

0 1 0

0 0 1

 (A65)

Following Uhlig (1999), we solve for the generalized eigenvectors and eigenvalues of the

matrix Ξ with respect to the matrix ∆, where

Ξ =

[
−G −H
I3 03

]
, (A66)

∆ =

[
F 03

03 I3

]
(A67)

To obtain a solution, we then pick three generalized eigenvalues λ1, λ2, λ3 with generalized

eigenvectors [λz′1, z
′
1]

′, [λ2z
′
2, z2]

′, and [λ3z
′
3, z

′
3]

′. We denote the diagonal matrix of these

eigenvalues by Λ = diag (λ1, λ2, λ3), and the matrix of the lower [3 × 1] portion of the

eigenvectors by Ω = [z1, z2, z3]. The corresponding solutions for B and Σ are then given by:

B = ΩΛΩ−1, (A68)

Σ = − [FB +G]−1M. (A69)
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For both our calibrations, there exist exactly three generalized eigenvalues with absolute

value less than one, and we pick the non-explosive solution corresponding to these three

eigenvalues.

B.2 Rotated state vector

Our state space for solving for asset prices is five-dimensional: It consists of Z̃t, which a

scaled version of Yt, the surplus consumption ratio relative to steady-state ŝt, and the lagged

output gap xt−1.

We next describe the definition of Z̃t. To simplify the numerical implementation of the

asset pricing recursions, we require that shocks to the scaled state vector Z̃t are independent

standard normal and that the first dimension of the scaled state vector is perfectly correlated

with consumption innovations. This rotation facilitates the numerical analysis, because it is

easier to integrate over independent random variables. Aligning the first dimension of the

scaled state vector with output gap innovations (and hence surplus consumption innovations)

helps, because it allows us to use a finer grid to integrate numerically over this crucial

dimension over which asset prices are most non-linear.

If the scaled state vector equals Z̃t = AYt for some invertible matrix A, the dynamics of

Z̃t are given by:

Z̃t = AYt, (A70)

Z̃t+1 = ABA−1︸ ︷︷ ︸
B̃

Z̃t + AΣvt+1︸ ︷︷ ︸
ϵt+1

. (A71)

We hence want a matrix, A, such that

V ar (ϵt+1) = AΣΣvΣ
′A′, (A72)

=

 1 0 0

0 1 0

0 0 1

 . (A73)

Finding such a matrix A should in general be possible, because the matrix M and therefore

ΣΣvΣ
′ generally have rank three. We require that the first dimension of ϵt+1 is perfectly

correlated with the consumption shock. We can therefore find the three rows of A using the

following steps:

1. Set A1 =
e1√

e1ΣΣvΣ′e′1
.
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2. We use the MATLAB function null to compute the null space of A1ΣΣvΣ
′. Let n2

denote the first vector in null (A1ΣΣvΣ
′). We then define the second row of A as the

normalized version of n2:

A2 =
n2√

n2ΣΣvΣ′n′
2

. (A74)

3. Let n3 denote the first vector in null (A1ΣΣvΣ
′, A2ΣΣvΣ

′). We then define the third

row of A as the normalized version of n3:

A3 =
n3√

n3ΣΣvΣ′n′
3

. (A75)

It is then straightforward to verify that equation (A73) holds for

A =

 A1

A2

A3

 . (A76)

B.3 Asset pricing recursions

Before deriving the recursions for the numerical asset pricing computations, we derive a

convenient form for the dynamics of the log surplus consumption ratio. We use ei to denote

a row vector with 1 in position i and zeros elsewhere. The matrix

ΣM = e1Σ (A77)

denotes the loading of consumption innovations onto the vector of shocks vt, where e1 is

a basis vector with a one in the first position and zeros everywhere else. The volatility of

consumption surprises equals:

σ2
c = ΣMΣvΣ

′
M . (A78)

To simplify notation, we define ŝt as the log deviation of surplus consumption from its steady

state. The dynamics of ŝt are:

ŝt = st − s̄, (A79)

ŝt = θ0ŝt−1 + θ1xt−1 + θ2xt−2 + λ(ŝt−1)εc,t, (A80)
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where with an abuse of notation we write:

λ(ŝt) = λ0
√

1− 2ŝt − 1, ŝt ≤ smax − s̄, (A81)

λ(ŝt) = 0, ŝt ≥ smax − s̄. (A82)

The steady-state surplus consumption sensitivity equals:

λ0 =
1

S̄
. (A83)

In our calculations of bond prices, we repeatedly substitute out expected log SDF growth,

which equals:

Et [mt+1] = log β − γEt∆ŝt+1 − γEt∆ct+1, (A84)

= −rt + ξt −
γ

2
(1− θ0)(1− 2ŝt), (A85)

= −(e3 − e2B + (1− ϕ)e1)Yt + ξt −
γ

2
(1− θ0)(1− 2ŝt) (A86)

We often combine this with rt = r̄ + (e3 − e2B)Zt and r̂t = (e3 − e2B)Zt.

Including the constant, consumption growth is given by:

∆ct+1 = g + xt+1 − ϕxt. (A87)

The steady state real short-term interest rate at xt = 0 and st = s̄ is the same as in Campbell

and Cochrane (1999):

r̄ = γg − 1

2
γ2σ2

c/S̄
2 − log(β). (A88)

The updating rule for the log surplus consumption ratio can then be written in terms of

the state variables as:

ŝt+1 = θ0ŝt + θ1e1A
−1Z̃t + θ2xt−1 + λ(ŝt)εc,t+1. (A89)

B.3.1 Recursion for zero-coupon consumption claims

We now derive the recursion for zero-coupon consumption claims in terms of state variables

Z̃t, ŝt and xt−1. Let P c
nt/Ct denote the price-dividend ratio of a zero-coupon claim on

consumption at time t + n. The outline of our strategy here is that we first derive an

analytic expression for the price-dividend ratio for P c
1t/Ct. For n ≥ 1 we guess and verify

13



recursively that there exists a function Fn(Z̃t, ŝt, xt−1), such that

P c
nt

Ct
= Fn

(
Z̃t, ŝt, xt−1

)
. (A90)

The ex-dividend price-consumption ratio for a claim to all future consumption is then given

by

Pt
Ct

= F
(
Z̃t, ŝt, xt−1

)
, (A91)

where we define

F
(
Z̃t, ŝt, xt−1

)
=

∞∑
n=1

Fn

(
Z̃t, ŝt, xt−1

)
. (A92)

We now derive the recursion of zero-coupon consumption claims in terms of state variables

Z̃t and ŝt. The one-period zero coupon price-consumption ratio solves:

P c
1,t

Ct
= Et

[
Mt+1Ct+1

Ct

]
(A93)

We simplify

Mt+1Ct+1

Ct
= β exp(−γEt∆ŝt+1 − (γ − 1)Et∆ct+1

−γ(ŝt+1 − Etst+1)− (γ − 1)(ct+1 − Etct+1)).

Using the notation fn = log(Fn), this gives the log one-period price-consumption ratio as:

f1

(
Z̃t, ŝt, xt−1

)
= log β − γ[(θ0 − 1)ŝt + θ1xt + θ2xt−1]− (γ − 1)[g + Etxt+1 − ϕxt]

+
1

2
(γλ(ŝt) + (γ − 1))2 σ2

c , (A94)

= log β − (γ − 1)g − e1[(γθ1 − γϕ+ ϕ)I + (γ − 1)B]A−1Z̃t

−γ(θ0 − 1)ŝt − γθ2xt−1 +
1

2
(γλ(ŝt) + (γ − 1))2 σ2

c (A95)

Next, we solve for fn, n ≥ 2 iteratively. Note that:

P c
nt

Ct
= Et

[
Mt+1Ct+1

Ct

P c
n−1,t+1

Ct+1

]
= Et

[
Mt+1Ct+1

Ct
Fn−1

(
Z̃t+1, ŝt+1, xt

)]
(A96)
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This gives the following expression for fn:

fn(Z̃t, ŝt, xt−1) = log
[
Et
[
exp

(
log β − (γ − 1)g − e1[(γθ1 − γϕ+ ϕ)I + (γ − 1)B]A−1Z̃t

−γ(θ0 − 1)ŝt − γθ2xt−1 − (γ(1 + λ(ŝt))− 1)σcϵ1,t+1

+fn−1(Z̃t+1, ŝt+1, xt)
)]]

. (A97)

Here, ϵ1,t+1 denotes the first dimension of the shock ϵt+1.

B.3.2 Recursion for zero-coupon bond prices

We use P $
n,t and Pn,t to denote the prices of nominal and real n-period zero-coupon bonds.

The strategy is to develop analytic expressions for one- and two-period bond prices. We

then guess and verify recursively that the prices of real and nominal zero-coupon bonds with

maturity n ≥ 2 can be written in the following form:

Pn,t = Bn(Z̃t, ŝt, xt−1), (A98)

P $
n,t = B$

n(Z̃t, ŝt, xt−1), (A99)

where Bn(Z̃t, ŝt, xt−1) and B
$
n(Z̃t, ŝt, xt−1) are functions of the state variables. As discussed

in the main paper, we assume that the short-term nominal interest rate contains no risk

premium, so the one-period log nominal interest rate equals it = rt+Etπt+1. Taking account

of the constants, one-period bond prices equal:

P $
1,t = exp(−Y3,t − r̄), (A100)

P1,t = exp(−Y3,t + EtY2,t+1 − (1− ϕ)Y1,t − r̄). (A101)

We next solve for longer-term bond prices including risk premia. Substituting in (A100)

into the bond-pricing recursion gives:

P $
2,t = exp(−ξt)Et

[
Mt+1P

$
1,t+1 exp(−Y2,t+1 + (1− ϕ)Y1,t)

]
(A102)

= exp(−ξt)Et [Mt+1 exp(−Y3,t+1 − Y2,t+1 + (1− ϕ)Y1,t − r̄)] . (A103)
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We can now verify that the two-period nominal bond price takes the form (A99):

B$
2(Z̃t, ŝt, xt−1) = exp (Et (mt+1 − ξt − Y3,t+1 − Y2,t+1 + (1− ϕ)Y1,t)− r̄)

×Et

exp
−γ (λ(ŝt) + 1)ΣM − [(e2 + e3)Σ]︸ ︷︷ ︸

v$

 vt+1

 .
(A104)

Here, we define the vector v$ to simplify notation. Taking logs, substituting out for Etmt+1,

and using the definition for the sensitivity function λ(ŝt), we get:

b$2 = −e3[I +B]A−1Z̃t +
1

2
v$Σvv$′

+γ (λ(ŝt) + 1)ΣMΣvv
′
$ − 2r̄. (A105)

The closed-form solution for the two-period real bond price becomes

P2,t = exp (Et (mt+1 − ξt − Y3,t+1 − (1− ϕ)Y1,t+1 + Y2,t+2)− r̄)

×Et

exp
(−γ(λ(ŝt) + 1)ΣM − (e3 + (1− ϕ)e1 − e2B)Σ︸ ︷︷ ︸

vr

)vt+1


(A106)

We define the vector vr to simplify notation. Taking logs, substituting out for Etmt+1, and

using the definition for λ(ŝt) gives:

b2(Z̃t, ŝt, xt−1) = −vr [I +B]A−1Z̃t +
1

2
vrΣvv

′
r + γ (λ(ŝt) + 1)ΣMΣvv

′
r − 2r̄.

(A107)

For n ≥ 3, we repeatedly substitute out for Etmt+1 to obtain the following recursion for

nominal and real bond prices, respectively:

B$
n(Z̃t, ŝt, xt−1) = Et

[
exp

(
mt+1 − ξt − Y2,t+1 + (1− ϕ)Y1,t + b$n−1(Z̃t+1, ŝt+1, B

$xt)
)]

= Et
[
exp

(
−r̄ − e3A

−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt)

−γ(1 + λ(ŝt))σcϵ1,t+1 − e2A
−1ϵt+1 + b$n−1(Z̃t+1, ŝt+1, xt)

)]
. (A108)
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The value function iteration for real bond prices then becomes

Bn(Z̃t, ŝt, xt−1) = Et
[
exp

(
mt+1 − ξt + bn−1(Z̃t+1, ŝt+1, xt)

)]
= Et

[
exp

(
−r̄ − (e3 − e2B + (1− ϕ)e1)A

−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt)

−γ(1 + λ(ŝt))σcϵ1,t+1 + bn−1(Z̃t+1, ŝt+1, xt)
)]
. (A109)

B.3.3 Computing returns

The log return on the consumption claim equals:

rct+1 = log

(
P c
t+1 + Ct+1

P c
t

)
, (A110)

= ∆ct+1 + log

1 +
P c
t+1

Ct+1

P c
t

Ct

 . (A111)

Real and nominal log bond yields equal:

yn,t = − 1

n
bn,t, (A112)

y$n,t = − 1

n
b$n,t. (A113)

Real log bond returns equal:

rn,t+1 = bn−1,t+1 − bn,t. (A114)

Nominal log bond returns equal:

r$n,t+1 = b$n−1,t+1 − b$n,t. (A115)

Real and nominal bond log excess returns then equal:

xrn,t+1 = rn,t+1 − rt, (A116)

xr$n,t+1 = r$n,t+1 − it. (A117)
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B.3.4 Levered stock prices and returns

We note that the price of the levered equity claim is δP c
t , so the price-dividend ratio equals:

P δ
t

Dδ
t

= δ
Ct
Dδ
t

P c
t

Ct
. (A118)

Using the expression

Dδ
t+1 = P c

t+1 + Ct+1 − (1− δ)P c
t exp (rt)− δP c

t , (A119)

and

P δ
t = δP c

t (A120)

gives the gross return on levered stocks:

(
1 +Rδ

t+1

)
=

Dδ
t+1 + P δ

t+1

P δ
t

, (A121)

=
1

δ

P c
t+1 + Ct+1 − (1− δ)P c

t exp(rt)

P c
t

, (A122)

=
1

δ

(
1 +Rc

t+1

)
− 1− δ

δ
exp (rt) . (A123)

Log stock excess returns then equal:

xrδt+1 = rδt+1 − rt. (A124)

To mimic firms’ dividend smoothing in the data, we report simulated moments for the

price of equities dividend by dividends smoothed over the past 64 quarters:

P δ
t /

(
1

64
(Dδ

t +Dδ
t−1 + ...+Dδ

t−63)

)
. (A125)

B.4 Risk-premium decomposition

We use the superscript rn for risk-neutral, superscript cf for cash flow, and rp for risk premium.

Risk-neutral valuations are expected cash flows discounted with the risk-neutral discount

factor, given by:

M rn
t+1 = exp(−(rt − ξt)). (A126)
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Note that since we are not interested in risk-neutral bond and stock prices, but only a

decomposition of returns, multiplyingM rn
t+1 by a constant discount rate does not matter. For

any zero-coupon claim it would shift risk-neutral returns merely by a constant and therefore

leave our decomposition into risk-neutral and risk-premium components unaffected. For a

claim to all future consumption or stock returns, a constant discount rate could theoretically

shift the weights between nearer-term consumption claims and longer-term consumption

claims, and therefore change risk-neutral returns. However, since consumption growth is

stationary we have found that this makes very little different to risk-neutral stock returns in

any of our numerical applications.

B.4.1 Risk-neutral zero-coupon bond prices

We use analogous recursions to solve for risk-neutral bond prices. One-period risk-neutral

bond prices are given exactly as before by equations (A100) and (A101). For n > 1, we guess

and verify that the prices of real and nominal risk-neutral zero-coupon bonds with maturity

n can be written in the following form

P rn
n,t = Brn

n (Z̃t, ŝt, xt−1), (A127)

P $,rn
n,t = B$,rn

n (Z̃t, ŝt, xt−1). (A128)

for some functions Brn
n (Z̃t, ŝt, xt−1) and B

$,rn
n (Z̃t, ŝt, xt−1).

We derive the two-period risk-neutral nominal bond price analytically:

P $,rn
2,t = exp(−ξt)Et

[
M rn

t+1P
$,rn
1,t+1 exp(−Y2,t+1 + (1− ϕ)Y1,t)

]
(A129)

= exp(−rt)Et [exp(−Y3,t+1 − Y2,t+1 + (1− ϕ)Y1,t − r̄)] . (A130)

We can hence verify that the two-period risk-neutral nominal bond price takes the form

(A99)

b$,rn2 = −e3 [I +B]A−1Z̃t +
1

2
v$Σvv$′ − 2r̄ (A131)

Here, the vector v$ is identical to the case with risk aversion. Comparing expressions (A131)

and (A105) shows that they agree when γ = 0. We similarly solve for 2-period real bond
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prices in closed form:

P rn
2,t = exp (−Y3,t + EtY2,t+1 − (1− ϕ)Y1,t − r̄)× exp (Et (−Y3,t+1 + Et+1Y2,t+2 + (1− ϕ)Y1,t+1 − r̄))

×Et

exp
−(e3 + (1− ϕ)e1 − e2B)Σ︸ ︷︷ ︸

vr

vt+1

 . (A132)

The vector vr is again identical to the case with risk aversion. Taking logs gives:

brn2 (Z̃t, ŝt, xt−1) = −(e3 + (1− ϕ)e1 − e2B) [I +B]A−1Z̃t +
1

2
vrΣvv

′
r − 2r̄. (A133)

We note that the risk-neutral bond prices (A133) and bond prices with risk aversion (A107)

are identical when the utility curvature parameter γ equals zero.

For n ≥ 3 the n-period risk neutral nominal and real bond prices satisfy the following

recursions, respectively:

B$,rn
n (Z̃t, ŝt, xt−1) = Et

[
exp

(
−r̄ − e3A

−1Z̃t − e2A
−1ϵt+1 + b$n−1(Z̃t+1, ŝt+1, xt)

)]
,(A134)

Brn
n (Z̃t, ŝt, xt−1) = Et

[
exp

(
−r̄ − (e3 + (1− ϕ)e1 − e2B)A−1Z̃t + bn−1(Z̃t+1, ŝt+1, xt)

)]
(A135)

B.4.2 Risk-neutral zero-coupon consumption claims

Next, we derive recursive solutions for the risk-neutral prices of zero-coupon consumption

claims. Let P c,rn
nt /Ct denote the risk-neutral price-dividend ratio of a zero-coupon claim on

consumption at time t+n. The risk-neutral price-consumption ratio of a claim to the entire

stream of future consumption equals:

P c,rn
t

Ct
=

∞∑
n=1

P c,rn
nt

Ct
. (A136)

For n ≥ 1, we guess and verify there exists a function F rn
n (Z̃t, ŝt, xt−1), such that

P c,rn
nt

Ct
= F rn

n

(
Z̃t, ŝt, xt−1

)
. (A137)
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We start by deriving the analytic expression for F rn
1 . The one-period risk-neutral zero-coupon

price-consumption ratio solves

P c,rn
1,t

Ct
= Et

[
M rn

t+1

Ct+1

Ct

]
(A138)

= exp(−rt + ut)Et
[
Ct+1

Ct

]
(A139)

= exp(−γEtxt+1 + γ(ϕ− θ1)xt − γθ2xt−1 − r̄)Et
[
Ct+1

Ct

]
(A140)

Using (A87) to substitute for consumption growth, we can derive the following analytic

expression for f rn1 :

f rn1 (Z̃t, ŝt, xt−1) = g − r̄ − e1[(γθ1 − γϕ+ ϕ)I − (1− γ)B]A−1Z̃t − γθ2xt−1 +
1

2
σ2
c .

(A141)

Next, we solve for fn, n ≥ 2 iteratively:

P c,rn
nt

Ct
= exp (−γEtY1,t+1 + γ(ϕ− θ1)Y1,t − γθ2xt−1 − r̄)Et

[
Ct+1

Ct
F rn
n−1

(
Z̃t+1, ŝt+1, xt

)]
(A142)

This gives the following expression for f rnn :

f rnn (Z̃t, ŝt, xt−1) = log [Et [exp (−γEtY1,t+1 + γ(ϕ− θ1)Y1,t − γθ2xt−1 − r̄

+g − ϕY1,t + EtY1,t+1 + σcϵ1,t+1

+f rnn−1(Z̃t+1, ŝt+1, xt)
)]]

. (A143)

Finally, we re-write f rnn,t as an expectation involving f rnn−1,t+1, the state variables Z̃t, and

period t+ 1 shocks:

f rnn (Z̃t, ŝt, xt−1) = log
[
Et
[
exp

(
e1[(1− γ)B − (ϕ− γ(ϕ− θ1))I]A

−1Z̃t − γθ2xt−1

+g − r̄ + σcϵ1,t+1 + f rnn−1(Z̃t+1, ŝt+1, xt)
)]]

. (A144)

B.5 Risk-neutral returns

We plug risk-neutral price-consumption ratios and bond prices into equations (A111) through

(A117). This gives risk-neutral returns on the consumption claim, risk-neutral log excess

21



bond returns, and risk-neutral bond yields. We then substitute risk-neutral returns on the

consumption claim into (A123)-(A124) to obtain risk-neutral log excess stock returns.

C Microfoundations for bond preference shock

In this Section, I show that the bond preference shock ξt can be microfounded either as a

safety shock or an optimism or expected growth shock.

C.1 Safety shock microfoundations

For simplicity, I follow Bianchi and Lorenzoni (2021) and model private loans as interme-

diated by intermediaries with time-varying convex intermediation costs. A model of gov-

ernment bonds in the utility function as in Krishnamurthy and Vissing-Jorgensen (2012) or

Kekre and Lenel (2020) would act similarly, driving a wedge between the loan rate faced by

private households and the government bond yield.

Households can borrow or invest in the private loan market and the stock market, but

they cannot directly invest in the government bond market. The private loan market is

intermediated by a sequence of short-lived intermediaries, who require repayment after one

period. Households are able to take loans analogous to n-period nominal or inflation indexed

bonds at time t, which require a time t+1 nominal repayment of P $
n−1,t+1 or Pn−1,t+1exp(πt) to

the intermediary, respectively. If households wish to hold these n-period nominal or inflation-

indexed private loans to maturity, they can roll them over using a sequence of n short-lived

intermediaries. The assumption of short-lived intermediaries simplifies the exposition, as

it ensures that future shocks to intermediation capacity are not priced in a separate risk

premium.

Let Qn,t and Q
$
n,t denote the quantity of n-period private loans intermediated. Interme-

diaries are assumed to be able to go long and short in the government bond market and in

the private loan market. So if intermediaries are at all risk averse, it is optimal to completely

hedge the period t+1 cash flows in period t+1. Similarly to Bianchi and Lorenzoni (2021),

generation t intermediaries are assumed to face convex intermediation costs in the quantity

intermediated

1

ωt
Ω

(
∞∑
n=1

P̂n,tQn,t +
∞∑
n=1

P̂ $
n,tQ

$
n,t

)
, (A145)

where ωt is a shock to intermediation capacity. The net profits of generation t intermediaries
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are given by

∞∑
n=1

(
P̂n,t − Pn,t

)
Qn,t +

∞∑
n=1

(
P̂ $
n,t − P $

n,t

)
Q$
n,t −

1

ωt
Ω

(
∞∑
n=1

P̂n,tQn,t +
∞∑
n=1

P̂ $
n,tQ

$
n,t

)
.(A146)

The intermediaries’ first-order condition for intermediating the n-period real private loan

becomes

P̂n,t − Pn,t =
1

ωt
Ω′

(
∞∑
n=1

P̂n,tQn,t +
∞∑
n=1

P̂ $
n,tQ

$
n,t

)
P̂n,t. (A147)

The intermediaries’ first-order condition for the n-period nominal private loan becomes

P̂ $
n,t − P $

n,t =
1

ωt
Ω′

(
∞∑
n=1

P̂n,tQn,t +
∞∑
n=1

P̂ $
n,tQ

$
n,t

)
P̂ $
n,t. (A148)

Simplifying further to quadratic adjustment costs of the form Φ(x) = c
2
x2 these expres-

sions simplify to

Pn,t =

1−
c
(∑∞

n=1 P̂n,tQn,t +
∑∞

n=1 P̂
$
n,tQ

$
n,t

)
ωt

 P̂n,t, (A149)

=

1−
c
(∑∞

n=1 P̂n,tQn,t +
∑∞

n=1 P̂
$
n,tQ

$
n,t

)
ωt

Et [Mt+1Pn−1,t+1] , (A150)

P $
n,t =

1−
c
(∑∞

n=1 P̂n,tQn,t +
∑∞

n=1 P̂
$
n,tQ

$
n,t

)
ωt

 P̂ $
n,t, (A151)

=

1−
c
(∑∞

n=1 P̂n,tQn,t +
∑∞

n=1 P̂
$
n,tQ

$
n,t

)
ωt

Et
[
Mt+1exp(−πt)P $

n−1,t+1

]
,(A152)

where the last step follows from households’ first order condition with respect to the inflation-

indexed and nominal n-period private loan. Defining exp(−ξt) =
(
1− c(

∑∞
n=1 P̂n,tQn,t+

∑∞
n=1 P̂

$
n,tQ

$
n,t)

ωt

)
,

the bond asset pricing recursions (13) and (14) in the main paper follow.

C.2 Expected growth shock microfoundations

An alternative for the bond preference shock is as a shock to expected growth, that is not

subsequently not realized, along the lines of Bordalo et al. (2020) and Beaudry and Portier
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(2006). Assume that va,t is an iid shock to expected productivity growth:

Ẽt∆at+1 = (1− ϕ)xt + va,t. (A153)

Here, va,t is a shock to expected productivity, that is subsequently not realized. Let Ẽ denote

the subjective expectations including this expected productivity shock, and E denote the

expectations of a rational outside observer. Then the bond pricing Euler equation for a real

n-period bond becomes

Pn,t = βẼt [exp (−γ∆ct+1 − γ∆st+1)Pn−1,t+1] , (A154)

= exp (−γva,t) Ẽt [exp (−γ (xt+1 − ϕxt)− γ∆st+1)Pn−1,t+1] , (A155)

= exp(−γva,t)Et [exp (−γ (xt+1 − ϕxt)− γ∆st+1)Pn−1,t+1] , (A156)

= exp(−γva,t)Et [Mt+1Pn−1,t+1] , (A157)

where Mt+1 is the SDF in terms of ex-post realized consumption and surplus consumption.

Similarly, for an n-period nominal bond

Pn,t = exp(−γva,t)Et
[
Mt+1exp(−πt+1)P

$
n−1,t+1

]
. (A158)

Defining exp(−ξt) = exp(−γva,t) the bond pricing recursions in equation (13) and (14) in

the main paper go through.

All that remains to check is that stock pricing recursions also go through. For this, I

consider a levered claim to consumption with leverage parameter 1
δ
as in Abel (1990). The

main paper uses a slightly more complicated model for leverage with very similar prop-

erties, while also keeping dividends and consumption cointegrated. The advantage of the

simple Abel (1990) leverage specification is that it can show that stock prices are exactly

unchanged, whereas with the cointegrated leverage specification stock prices might change

slightly, though due to its similarity to the Abel (1990) specification any changes are plausibly

quantitatively insignificant.

The value function iteration for a levered consumption claim then equals:

P δ,c
n,t

C
1/δ
t

= Ẽt

[
exp (−γ∆ct+1 − γ∆st+1)

(
Ct+1

Ct

)1/δ P δ,c
n−1,t+1

C
1/δ
t+1

]
. (A159)

If γ = 1
δ
, as in the 1980s calibration in the main paper, any shocks to expected potential
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output growth drop out from the right-hand-side

P δ,c
n,t

C
1/δ
t

= Ẽt

[
exp (−γ∆st+1)

P λ,c
n−1,t+1

Cδ
t+1

]
, (A160)

= Et

[
exp (−γ∆st+1)

P λ,c
n−1,t+1

Cδ
t+1

]
, (A161)

= Et

[
Mt+1

(
Ct+1

Ct

)1/δ P δ,c
n−1,t+1

C
1/δ
t+1

]
, (A162)

i.e. the standard pricing equation for a levered consumption claim takes the same form as

in the main paper with Abel (1990) leverage.

Table A4 shows that setting γ = 1 and/or ϕ = 1 leaves the asset pricing properties in

Table 2 in the main paper unchanged, further addressing concerns that the simplification to

Abel (1990) leverage might somehow matter for the results. With γ = 1, the shock va,t drops

out of the asset pricing Euler equation for the unlevered consumption claim, as can easily

be seen by setting γ = δ = 1 in equation (A162). Levered consumption claims, as modeled

in the main paper, are then also exactly unchanged in the presence of va,t. Setting ϕ = 1 is

also informative, as in this case price inflation equals wage inflation in equation (23) in the

main paper, so there is no concern that shocks to expected productivity growth could lead

to a wedge between price and wage inflation.

D Additional Model Results

D.1 The Importance of Time-Varying Risk Premia for Bond-Stock

Return Comovements

Tables A1 and A2 show that time-varying risk premia are the dominant parts of model

stock and bond returns, and especially of model bond-stock return comovements in the

model, analogously to Table 5 in Campbell et al. (2020). Starting in the bottom-left of

Table A2, we see that the overall covariance between nominal bond excess returns and stock

returns in the model is 95.66 in the 1979.Q4-2001.Q1 calibration. However, the covariance of

risk-neutral nominal bond excess returns and risk-neutral stock excess returns in the same

calibration is only 8.72, i.e. less than 10% of the overall covariance. The rest is made up

of the covariance between time-varying risk premia in stock excess returns and risk-neutral

bond excess returns (11.47), time-varying risk premia in bond excess returns with risk-neutral

stock excess returns (27.62), and the covariance between time-varying risk premia in bond
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excess returns and time-varying risk premia in stock excess returns (47.84).

The other panels confirm this pattern that time-varying risk premia represent the lion’s

share of model bond-stock comovements, and amplify the comovement of risk-neutral bond

and stock excess returns by factors of 10 or greater.

D.2 Varying Adaptiveness of Wage-Setter Inflation Expectations

Figure A2 compares the model fit for the macroeconomic target moments with ζ = 0 and

ζ = 0.6 for both subperiods. The right panels in Figure A2 show that the parameterization

with ζ = 0 (as in the 2000s calibration in the main paper) fits the macroeconomic data

better than an alternative version with ζ = 0.6, supporting the choice of ζ = 0 in the 2000s

calibration. In particular, setting ζ = 0.6 in the 2000s calibration leads to a worse fit for

the key output-inflation relationship in the 2000s, shown in the top-right panel. Intuitively,

ζ = 0 allows the model to fit the positive inflation-output gap relationship in the 2000s data

better, because with ζ = 0 inflation is more forward-looking and hence responsive to demand

shocks.

The left plots in Figure A2 show the comparison for the 1980s calibration. As expected the

macroeconomic fit deteriorates when moving ζ to match the bond excess return predictability

in the data. However, it is informative which macroeconomic moment looks different for

ζ = 0 vs. ζ = 0.6. Most importantly, the top-left plot looks very similar under these two

parameterizations, so the choice of rational vs. adaptive wage-setter inflation expectations

does not affect the model’s implication of “stagflationary” dynamics in the 1980s. What

changes is mostly the persistence of inflation, which is visible in a more persistent policy rate

response to an inflation innovation in the bottom-left plot. A volatile persistent component

in inflation for the 1980s is in line with a long-standing econometrics literature that has

decomposed inflation into its permanent and transitory components (Stock and Watson

(2007)), so this persistence with ζ = 0.6 is in line with outside data not used directly for the

calibration.

Figure A3 and A4 inspect the mechanism for how ζ changes the macroeconomic dynamics

by looking at model macroeconomic impulse responses to demand, supply and monetary

policy shocks. It shows that the inflation response to a supply shock is much less persistent

when ζ = 0 than when ζ = 0.6. This change in the inflation response to a supply shock is

less important for the properties of the 2000s calibration, which only has a small volatility

of supply shocks. But for the 1980s calibration, where the volatility of supply shocks is high,

a higher value of ζ = 0.6 generates a much more persistent inflation process. This strong

persistent component in the model inflation dynamics for the 1980s calibration matters for
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the predictability of bond excess returns. It is the reason that supply shocks move the slope

of the term structure in the same direction as bond risk premia in the middle column in the

top row in Figure A5.

The adaptiveness of wage-setters’ inflation expectations drives how long inflation remains

high after an adverse supply shock. It is therefore relevant to understand how this param-

eter is reflected in bond risks. Figure A1, however, shows that nominal bond betas change

little with the adaptiveness of wage-setters’ inflation expectations. Intuitively, more adap-

tive wage-setter inflation expectations imply a smaller initial but more persistent inflation

response to a supply shock. The expectation of more persistent inflation amplifies the fall in

nominal bond prices, but monetary policy also raises rates more slowly, with offsetting effects

on bond-stock comovements in the model. Macroeconomic impulse responses at different ζ

are depicted in Appendix Figure A3.

Figure A1: Nominal Bond Betas by Adaptiveness of Inflation Expectations

This figure shows model-implied ten-year nominal bond-stock betas against the standard deviation of supply

shocks for rational (ζ = 0) and partially adaptive (ζ = 0.6) wage-setter inflation expectations. Unless

otherwise labeled all parameter values are set to the 2001.Q2-2019.Q4 calibration. The 2001.Q2-2019.Q4

calibration monetary policy parameter values are highlighted with red asterisks.

However, the adaptiveness of wage-setters’ inflation expectations does have important

implications for Campbell-Shiller bond excess return predictability in the model, as shown

in Figure 3 in the main paper.
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D.3 Inflation Forecast Error Regressions

Additional empirical moments from inflation surveys provide external empirical support for

partially adaptive inflation expectations in the 1980s and rational inflation expectations in

the 2000s, which are calibrated to bond excess return predictability. Table A3 runs the

well-known test for the rationality of inflation expectations of Coibion and Gorodnichenko

(2015):

πt+3 − Ẽtπt+3 = a0 + a1

(
Ẽtπt+3 − Ẽt−1πt+3

)
+ εt+3. (A163)

Here, a tilde denotes potentially subjective inflation expectations. If expectations are full in-

formation rational the forecast error on the left-hand side of (A163) should be unpredictable,

and the coefficient a1 should equal zero. The empirical specification follows Coibion and

Gorodnichenko (2015), using the Survey of Professional Forecasters four-quarter and three-

quarter GDP deflator inflation forecasts to compute forecast revisions. The first column

in Table A3 uses a long sample 1968.Q4-2001.Q1 and confirms their well-known empirical

result. An upward revision in inflation forecasts tends to predict positive forecast errors.

The second and third columns run the same empirical regressions for the 1979.Q4-2001.Q1

and 2001.Q2-2019.Q4 subperiods. I find that for both subperiods the evidence becomes in-

significant. While this is potentially due to the smaller sample size and weaker statistical

power, the change in a1 from 1968.Q4-2001.Q1 to 2001.Q2-2019.Q4 is statistically signifi-

cant, consistent with more forward-looking inflation expectations in the 2000s. The last two

columns of the table show that the model matches this broad pattern in the predictability

of inflation forecast errors documented in the data.2

D.4 Calibration Robustness to Different Parameter Values

Table A4 shows that the main model implications for bond-stock betas are not sensitive to

choosing different values for the utility curvature, the consumption-output gap link ϕ, the

adaptiveness of inflation expectations ζ, or the slope of the Phillips curve κ. Implied nominal

bond-stock betas are positive for the 1980s calibration and negative for the 2000s calibration

and all moments are qualitatively or even quantitatively unchanged.

The case with ϕ = 1 is of interest because this switches off the difference between price

2The literature has not reached an agreement on whether inflation expectations have become more or
less rational over time. On the one hand, Bianchi, Ludvigson and Ma (2022) find less inflation forecast error
predictability post-1995, and Davis et al. (2012) shows that inflation expectations have become less responsive
to oil prices shocks in recent decades. However, Coibion and Gorodnichenko (2015) and Maćkowiak and
Wiederholt (2015) provide evidence and a model of decreasing attention to inflation as economic volatility
declined during the 1990s.
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Figure A2: Empirical Output Gap, Inflation, and Policy Rate Dynamics Pre- vs. Post-2001
with Rational Inflation Expectations

Panel A: Output Gap onto Lagged Price Inflation

1979.Q4-2001.Q1 2001.Q2-2019.Q4

Panel B: Output Gap onto Lagged Policy Rate

Panel C: Policy Rate onto Lagged Price Inflation

This figure is analogous to Figure 2 in the main paper, but it compares ζ = 0 and ζ = 0.6 for both

calibrations.

and wage inflation (equation (23) in the main paper). Setting ϕ = 1 leaves all asset pricing

and macroeconomic moments qualitatively and quantitatively unchanged. This tells us that
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the model properties are unaffected whether we assume sticky wages or sticky prices.

While the parameterization in the main paper with γ = 2 is chosen to replicate the output

impulse response to an identified monetary policy shock in the data, the case with γ = 1

and ϕ = 1 is of interest because it is a simple case where bond preference shocks are exactly

isomorphic to optimism or growth shocks. Changing the utility curvature parameter to γ = 1

implies a positive nominal bond-stock for the 1980s calibration and a negative nominal bond-

stock beta for the 2000s calibration. The nominal bond-stock beta for the 1980s calibration

is somewhat smaller in magnitude than in the baseline. While the Campbell-Shiller bond

excess return predictability coefficient is still positive and within a 90% confidence interval

of the empirical coefficient, it is also smaller. The reason is that with a larger EIS, monetary

policy is more effective at reducing inflation, leading to a less persistent inflation process and

hence less bond excess return predictability.

Setting ζ = 0 (i.e. rational inflation expectations) changes the Campbell-Shiller excess

bond return predictability coefficient to zero for the 1980s calibration, consistent with the

comparative statics in Figure 3 in the main paper, but leaves all other asset pricing moments

unchanged. This tells us that ζ is pinned down by the predictability of bond excess returns

without affecting any of the other model implications.

Finally, the rightmost column sets the slope of the Phillips curve to a higher value follow-

ing Rotemberg and Woodford (1997). The nominal and real bond-stock betas are unchanged

from the main calibration and all other moments look similar. The only slight change is in

the value of the 1980s Campbell-Shiller bond excess return predictability coefficient, which

is smaller for this model parameterization. The reason is that a higher slope of the Phillips

curve means that supply shocks lead to a stronger output response, and monetary policy

is more powerful in stabilizing inflation by driving down the output gap, leading to a less

persistent inflation process. As in the main paper, the Campbell-Shiller bond excess return

predictability coefficient is therefore informative for the Phillips curve more broadly. Overall,

the implications for nominal and real bond-stock betas are robust to varying the preference,

consumption-output gap link, inflation rationality, and Phillips curve parameters.

D.5 Yield Spread Impulse Responses

D.6 Visual Variance Decomposition via Impulse Responses

One might wonder which shocks are dominant for output gap, inflation, and interest rate

fluctuations in each calibration. Figure A6 shows this visually, by scaling the macroeconomic

impulse responses by the standard deviation of each shock, i.e. it shows impulse responses to

one-standard deviation demand, supply, and monetary policy shocks. Because the standard
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deviations of shocks differ across calibrations, the magnitudes of the responses also differ.

Comparing the magnitudes of the responses across calibrations, we see that output gap

flucatuations in the 1980s calibration are primarily driven by supply shocks, whereas in

the 2000s calibration primarily reflect demand shocks. Supply shocks are the predominant

driver of inflation in the 1980s calibration and also in the 2000s calibration. However, in

the 2000s calibration demand shocks also play a visible role for inflation. The nominal

interest rate mostly reflects demand shocks in the 2000s calibration, whereas in the 1980s

calibration it reflects supply shocks. Monetary policy shocks matter for short-term interest

rate fluctuations in the 1980s calibration, but only drive a small share of the fluctuations in

inflation or the output gap.
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Figure A6: Model Macroeconomic Impulse Responses to 1Std Deviation Shocks

This figure shows model impulse responses for the output gap (%,), inflation (ann %), nominal policy rate

(ann. %), and real one-quarter interest rate (ann. %). It is analogous to Figure 5 in the main paper, but

different from it shows impulse responses to 1std shocks. Because the standard deviations of shocks differ

across calibrations, the magnitudes also differ. Impulse responses for the 1979.Q4-2001.Q1 calibration are

shown in black, while the impulse responses for the 2001.Q2-2019.Q4 calibration are shown in red dashed.



E Details for Delta Method Standard Errors

This Section provides details for the Delta method used to construct standard errors in Ta-

ble 2. Standard errors are computed separately for each of the calibration steps, taking all

other parameters as given. Let Ψ̂ denote the vector of twelve (13 for the second subperiod)

empirical target moments, and Ψ(σx, σπ, σi, γ
x, γπ, ρi; ζ) the vector of model moments com-

puted analogously on model-simulated data. I choose subperiod-specific monetary policy

parameters γx, γπ, and ρi and shock volatilities σx, σπ, and σi while holding the inflation

expectations parameter constant at ζ = 0 to minimize the objective function:∥∥∥∥∥Ψ̂−Ψ(σx, σπ, σi, γ
x, γπ, ρi; ζ = 0)

SE(Ψ̂)

∥∥∥∥∥
2

. (A164)

Let ĤSE is the numerical Jacobian

ĤSE = ∆
(
Ψ/SE

(
Ψ̂
))

, (A165)

i.e. the vector of derivatives of the normalized objective function with respect to each pa-

rameter. I calculate this derivative numerically by using a derivative step of 0.05 for most

parameters (0.005 for σx to avoid setting it to negative values) and a simulation length of

100, as in the SMM estimation. I then average the simulated value for Ĥ across 20000 inde-

pendent simulations to reduce simulation noise. Because the weighting function in the GMM

estimation is the identity (after normalizing all moments into z-scores using the standard

errors of the empirical moments computed in the data), standard GMM results imply that

the variance-covariance matrix of the parameters is

V̂params = M̂−1
SEĤSEV̂ Ĥ

′
SEM̂

−1′

SE . (A166)

Here V̂ is the variance-covariance matrix of the target moments, and M̂SE = Ĥ ′
SEĤSE.

Under the simplifying assumption that the target moments are uncorrelated, V̂ collapses to

the identity and the expression for V̂params becomes

V̂params = (ĤSEĤ
′
SE)

−1. (A167)

The standard errors reported in Table 2 do not make this simplifying assumption, instead

computing V̂ as the correlation matrix across 1000 separate simulations of the model, where

again each simulation has sample length 100. The standard errors reported in Table 2 in the
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main paper are then obtained by substituting into (A166) and

SE(σx, σπ, σi, γ
x, γπ, ρi) = diag

(√
V̂params

)
. (A168)

A joint hypothesis test for γx = 0.5 and γπ = 1.1 is run by comparing

[γx − 0.5, γπ − 1.1] V̂params(1 : 2, 1 : 2)−1 [γx − 0.5, γπ − 1.1]′ ∼ χ2
2, where V̂params(1 : 2, 1 : 2)

is the upper [2× 2] block of V̂params.

The standard errors for ζ is obtained similarly, holding all other parameter values fixed.

The relevant moment is the Campbell-Shiller coefficient bCS. By standard GMM algebra,

the delta method standard error of ζ is

SE(ζ) =
SE

(
b̂SE
)

{
dbCS

dζ

}−1 , (A169)

i.e. the ratio of the standard error of the Campbell-Shiller coefficient in the data to the slope

of the model coefficient with respect to ζ.

For the 1980s period, the empirical Newey-West standard error with 4 lags equals SE(b̂SE) =

1.38. The numerical derivative is computed as dbCS

dζ
= bCS(ζ=0.6)−bCS(ζ=0)

0.6
= 1.26−(−0.36)

0.6
= 2.70,

giving the standard error for ζ as SE(ζ) = 1.38/2.70 = 0.51.

For the 2000s period, the empirical Newey-West standard error with 4 lags equals SE(b̂SE) =

1.18. The numerical derivative is computed as dbCS

dζ
= bCS(ζ=0.6)−bCS(ζ=0)

0.6
= −0.39−(−0.31)

0.6
=

0.44, giving the standard error for ζ as SE(ζ) = 1.18/0.44 = 2.67.
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